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Abstract

In order to act, plan, and achieve goals, people must learn about their environment
and the outcome of possible actions. One reason for human successes in developing
new theories and strategies when confronted with new problems is that people are
not passive observers. Indeed, children ask informative questions and can adapt
their strategies when inquiring about things they don’t know. In this thesis, I aim
to understand how people self-direct their learning across multiple tasks, when
trying to achieve goals within their environment.

Chapter 2 presents experiments designed to better understand people’s ex-
ploration and reward maximising strategies across a sequence of tasks. Through
these experiments I examine how the environment, specifically the availability
of information, and the prior knowledge of participants, affect their exploratory
strategies. To study participant strategies I develop a general framework that con-
siders both Bayesian approaches as well as a range of simpler heuristic strategies
to approach the problem of goal-directed exploration (Chapter 3). This frame-
work aims to explain the variation of participant strategies in terms of different
underlying cognitive mechanisms that guide exploration. One of the benefits of
a general framework is the ability to capture a diverse set of behaviours within
a continuous parameter space. I focus on the problem of understanding the dif-
ferences between participants by leveraging this shared psychological space. Spe-
cific families of strategies emerge from the behaviour of participants, highlighting
the importance of studying individual differences to better understand cognitive
mechanisms (Chapter 4).

In Chapter 5, I analyse the experimental data from Wu et al. (2018) that
considers similar phenomena concerning human exploration, with a specific focus
on people’s ability to generalise to guide their search. My analysis shows that our
general framework offers a more compelling explanation for participant behaviour
than the model they present, while again highlighting the importance of looking
at individual differences. From these model based analysis we find that people
are able to adapt to the structure of their environment, and are guided by local
uncertainty rather than global uncertainty during exploration.

Finally, Chapter 6 looks at participants’ behaviour when learning across a
sequence of tasks when the underlying problem structures may change. How do
people learn in a changing world? I show that the theory of inference by sampling
can help explain distinct phenomena relating to the dynamics of learning across
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tasks. Our models are able to explain people’s ability to progress across tasks
when they share structural similarities, their ability to adapt to change, but also
specific contexts where participants are continuously unable to realise the world
has changed.
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Chapter 1

Introduction

Understanding the world emerges from the interaction of two processes. The first
– empirical, or experimental – involves observing new phenomena and seeking
information. The second – reflective, or theoretical – involves coming up with
hypotheses to explain that which has been observed. The intricate interaction
between both processes, experimental design and hypothesis formation, has been
a subject of great interest in historical analyses of scientific discoveries. A common
picture used to explain theory formation is the drawing of a line to fit data points.
A successful theory will be one that explains the previous observations well,
and perhaps more critically, one that is also able to predict future observations
accurately.

(a) Example of three observations (b) Theories to explain past observations

Figure 1.1: Example of curve fitting to explain past observations. Which datapoint
(x) should one select next to learn the most about the unknown function?

Generating good theories about the world is one of the crucial abilities that
enables people to solve a large and diverse set of problems across many domains.
When confronted with new tasks, like playing a game, learning and applying a
technical skill, or making friends in a new culture, people are able to rely on
their previous experiences for guidance, without assuming that a new challenge
is identical to a familiar one. One reason for human successes in developing
new theories when confronted with new problems is that people are not passive

1



2

observers. Throughout our lives, we learn by asking about our environment and
interacting with it. We direct our attention and choose actions in ways that allow
us to learn better and more efficiently than if we had to learn through observation
only. Our agency helps us learn in two ways. First, each action we take is
like a tiny experiment, allowing us to distinguish causal relationships from mere
correlation (Sloman & Lagnado, 2005). Second, some events are more informative
than others. Interacting with the world thus allows us to both inquire about the
causal structure of the world, and to select actions that maximise information
intake. Indeed, children ask informative questions and can adapt their strategies
when inquiring about things they don’t know (Ruggeri & Lombrozo, 2014). For
example, a child might point to an object to know its name. They also play with
new toys in ways that help them disambiguate uncertain causal relationships and
gather information (Schulz et al., 2007; Schulz & Bonawitz, 2007; Cook et al.,
2011). The idea that people, like scientists, expand and refine their beliefs by
performing intuitive experiments that are efficient (or even optimal) in providing
us with information, e.g., about causal structure or the solution to a problem, has
been particularly influential (see e.g. Gopnik et al., 2004). This idea that humans
perform intuitive experiments, maximising information gain, has been applied to
understand causal learning (Bramley et al., 2015), concept learning (Gureckis
& Markant, 2009), question answering (Rothe et al., 2016) and more (for an
overview, see: Coenen et al., 2017; Gureckis & Markant, 2012; Nelson, 2005;
Schulz, 2012). In educational theory, it is also a widely known phenomenon that
active learning has many benefits for the learner and leads to better outcomes
than passive learners (Markant et al., 2016a; Bruner, 1961; Kuhn et al., 2000;
Freeman et al., 2014).

Learning, however, rarely happens for its own sake. While we are learning, we
are often also trying to achieve particular goals, and there is a tension between
choosing the actions that maximise the information we gain and those that are
most likely to provide immediate rewards. A poker player might call a bet with a
weak hand in order to learn about another player’s propensity for bluffing, while a
diner might choose an old favourite, even though visiting a new restaurant might
have been better and more informative. This explore-exploit trade-off exists in a
wide range of scenarios in science, medicine, industry, finance, policy making, and
robotics, where we find a similar tension between either spending time to collect
more data, or sticking to the information we currently have to take decisions that
could probably be improved given better knowledge (Mehlhorn et al., 2015; Hills
et al., 2015). Coming back to the example of fitting lines to data-points, this
can correspond to the problem of finding the maximum of an unknown function
within the fewest number of observations (see Figure 1.2). In this case, the theories
generated to explain the data also aim to guide the selection of future rewarding
actions. Should one select new actions because they are highly uncertain or
actions that are close/similar to previous rewarding actions?

People’s decision strategies when maximising rewards in the face of uncertainty
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true function

Figure 1.2: How do people direct their learning when trying to achieve goals (e.g.
finding the maximum of an unknown function)?

have been studied extensively. Multi-armed bandit (MAB) problems, where the
goal is to maximise reward sequentially choosing one of the N-arms of a bandit
(a bandit can be visualised as a row of slot machines, also known as “one-armed
bandits”), have been popular when studying how people balance exploration and
exploitation. Studies with MABs have provided evidence that people behave fol-
lowing a rational strategy, with their behaviour accurately predicted by Bayesian
learning models (Acuna & Schrater, 2009; Behrens et al., 2007). Evidence sug-
gests that people explore according to their uncertainty, consider the probability
that an option offers the maximum reward, and are able to adapt to the volatility
of their environment (Speekenbrink & Konstantinidis, 2015). Recent work shows
that people’s choices can be explained by a combination of uncertainty-directed
and random exploration strategies (Gershman, 2018). Studies have also under-
lined consistent differences across individuals, relating different learning strategies
to the psychological characteristics of participants (Steyvers et al., 2009).

While MABs treat each arm as independent of the other, many real-world
problems require a learner to choose between actions that may share different
degrees of similarity, indicating potentially similar outcomes. This is particularly
true in problems with large decision spaces. In these types of problems, each
action can be represented as a set of continuous and discrete features. Learning
how features relate to rewards allows for an efficient representation of the
environment, but also enables the learner to generalise to new events. For
example, most shoppers can make a confident prediction of a fruit’s ripeness based
on its texture and colour. And the strength and angle at which a golf player hits
the ball will describe how close it lands to a target at a driving range. These types
of problems are formally referred to as contextual MABs (or CMABs), when the
arms of a bandit have features that explain their reward distributions. In learning
how contextual features predict rewards, an agent in a CMAB task is implicitly
solving a function learning task, that is, using examples to discover relationships
between variables.

A number of studies have explored how people learn functions, and Gaussian



4

Process models have been proposed as a strong candidate to explain human
behaviour in diverse function learning tasks, providing a unifying framework for
rule-based and similarity-based models (Lucas et al., 2015). These models have
been useful in understanding how people exploit structured representations of
the environment to direct their exploration in CMAB tasks (Schulz et al., 2017b;
Borji & Itti, 2013; Wu et al., 2017). However, these experiments and the models
associated with them have assumed that the basic structure of the underlying
problem (i.e. which features relate to reward) is known in advance, or at least
unchanging from one task to the next. However, the real world is rarely so
obliging; it offers a multitude of different tasks that can change over time, some
of which have structures that we don’t know a priori (Gershman et al., 2015).

Understanding how agents ought to take decisions that maximise cumulative
reward has been the main focus of research in the field of reinforcement learning
(RL). Through its development, RL has contributed to our understanding of
human decision making by providing a normative framework within which
behaviour can be analyzed (Sutton & Barto, 1998; Niv, 2009). Recent advances
have been met with notable successes in complex settings, like playing Atari
video games at super-human performance levels (Mnih et al., 2015) and defeating
world champions in the game of Go (Silver et al., 2016). One drawback of
these algorithms is their need for massive amounts of data. Another is that,
unlike humans, they have been unable to learn multiple tasks sequentially
without forgetting previously acquired knowledge: a phenomenon referred to
as “catastrophic forgetting” McCloskey & Cohen (1989). The challenge of
continuously learning across multiple tasks remains largely unsolved and is a topic
of considerable interest (e.g. see Kirkpatrick et al., 2017; Wang et al., 2016).

The broad aim of this thesis is to come to a closer understanding of the
mechanisms that underpin human abilities to direct their learning to achieve goals
in a complex and changing world. By studying people’s strategies, we characterise
human adaptive behaviour across sequences of tasks in order to understand how
people detect change and similarities between tasks so as to avoid restarting their
learning from scratch every time they are faced with a change of context.

In Chapter 2, I introduce the experimental paradigm that will form the
empirical basis of this thesis. Through four experiments, I study the learning
strategies of people when faced with a sequence of new but related tasks. I
examine how the environment, specifically the availability of information, and the
prior knowledge of participants, affect their exploratory strategies. Empirically, I
find that people display biases and patterns of behaviour that deviate largely from
the qualitative predictions of Bayesian rational models. Rather than constructing
a model of their environment to select actions that maximise information or
rewards, many participants relied on the use of simpler heuristic strategies.
In Chapter 3, I develop a general modelling framework to better understand
the strategies and representations of people during learning and with the aim
of capturing a diversity of behaviours under a unique parameter space. The
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empirical analysis of Chapter 2 pointed out significant differences in the strategies
used by participants. In Chapter 4, I leverage the framework of our general
model to study patterns in variation of participant strategies. Four families of
strategies emerge from the behaviour of participants, recurring across the different
experimental conditions. While the large majority of participants relied on
previous observations to predict the outcome of unknown actions, only a minority
of participants seemed to rely on uncertainty to guide their search. Instead, we
find that novelty and local search were prominent factors behind the decision
strategies of many participant.

In Chapter 5 I look more specifically at people’s ability to generalise from
previous observations. I analyse the experimental data from Wu et al. (2018)
that presents different reward structures in an experimental paradigm similar to
the one we introduced in Chapter 2. An initial empirical analysis shows patterns
in individual differences similar to the ones discovered in Chapter 2. I then show
that our general framework offers a more compelling explanation for participant
behaviour than the model they present, and I offer a different interpretation of the
psychological claims one can draw from the modelling results. First, I show that
people are able to generalise adaptively to the structure of their environment.
Second, and contrary to the picture put forward by e.g. Schulz & Gershman
(2019), I show that (global) uncertainty-directed search is rarely the main driver
for the exploratory strategies of people. Instead, I argue that people are driven
by expected rewards, local uncertainty and novelty. Overall, I demonstrate the
importance of taking individual differences into account when studying human
behaviour.

Finally, Chapter 6 presents empirical data for people’s ability to learn across
sequences of tasks when the underlying problem structures may change. Through
model simulations, I show that inference by sampling can help explain distinct
phenomena relating to the dynamics of learning across tasks, namely people’s
ability to progress across tasks when they share structural similarities, their
ability to adapt to change, but also the specific contexts in which participants
are continuously unable to realise the world has changed.
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Chapter 2

Epistemic drive and memory
manipulations in explore-exploit
problems

2.1 Introduction

In the previous chapter we introduced the general problem of understanding how
people direct their learning in order to achieve goals in sequences of tasks. In this
chapter, we study how people learn to select actions that are most rewarding when
faced with a sequence of novel but potentially related tasks, and more specifically
how people might make use of contextual features to guide their learning. We
present the results of four experiments designed to better understand people’s
exploration and reward maximising strategies across a sequence of tasks. Do those
strategies evolve over time, as they encounter related tasks? Can people transfer
structural knowledge and improve their performance by leveraging similarities
between tasks? What is the relationship between people’s search strategies, their
ability to learn and generalise from observations, and how well they do?

When encountering new situations, people are often faced with a tension
between gathering more information to improve the quality of their future
decisions, or choosing actions that are known to be rewarding (Hills et al.,
2015). A doctor might, for example, want to run more tests to have a better
diagnosis for their patient, or instead choose to give them the treatment they
believe will best relieve them from their symptoms. Multi-armed Bandits (MAB)
have been a popular experimental paradigm to better understand human decision
strategies when dealing with the explore-exploit trade-off (Cohen et al., 2007).
The metaphor of the multi-armed bandit comes from the rows of slot machines
in casinos, where a gambler has to sequentially choose the arm of a bandit to
maximise their gains. In the same way, participants in these experiments have
to choose between different possible actions (e.g. the arms of a bandit) so as
to maximise their rewards. The learner is thus faced with a trade-off between

7
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choosing rewarding actions, or actions that will provide more information about
the reward distribution of the different options. In this case, the arms of the
bandit yield stochastic rewards and are independent of one another.

In the real world, an essential part of solving problems lies in discovering
their underlying structure. Actions can often be represented as a set of features
(e.g. how hard to push a button, or its position on a screen), and the outcome
of an action might give information about other similar actions. For example,
two structurally similar chemical compounds might have similar properties, or
animals of similar size might produce sounds of a similar pitch. These properties
are present in Contextual MABs (CMAB), where observable features provide
information about the arms’ reward distributions. Learning how features relate
to rewards allows for an efficient representation of the environment, and enables
the learner to generalise to new events.

The task of the learner can thus be separated into two distinct types of
generalisation when learning across a sequence of tasks. On the one hand,
the learner must extrapolate from the limited observations within their current
context to infer the latent structure of their environment. By learning the
relationship between action features and their outcomes, one can predict the
outcome of new and unobserved actions. We call this type of learning within-task
generalisation. This process has been widely studied in the context of category
learning, where one has to predict the class of an unknown object or entity
given their descriptive features. Similarly, the domain of function learning has
focused on the human ability to predict for continuous relationships (as opposed
to categorical ones) to better understand the human biases that guide learning.
Learning the functional form of relationships allows us to predict e.g. the amount
of pressure one needs to exert on the acceleration pedal to get to a specific
speed, or the ripeness of fruit based on its colour and softness. The outcome
of this research has shown that while people exhibit a strong bias toward linear
relationships (Brehmer, 1976; Kalish et al., 2004; Busemeyer et al., 1997), they are
able to learn a wide range of relationships that allow them to generalise efficiently
about unobserved data (Lucas et al., 2015; Wilson et al., 2015; León-Villagrá
et al., 2018).

The second task of the learner involves generalising from one task to the next,
or across-task generalisation. In an ever changing world, the same situation is
never encountered twice, yet we are able to leverage previous experiences to make
decisions and achieve goals. This can be done when contexts share structural
similarities. By constructing representations that capture abstract similarities
(Gershman et al., 2010a) or aspects of a task that are subject to change (Wilson
& Niv, 2011), the learner is able to deploy efficient generalisations across a wide
range of scenarios.

Previous studies of human behaviour in CMAB problems have shown that
people are able to generalise from their observations when faced with a large
number of options, and make use of uncertainty to direct their search (Schulz
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et al., 2017b; Wu et al., 2018; Borji & Itti, 2013). These experiments have
assumed the basic structure of the underlying problems to be static, or known in
advance, thus only focusing on within-task generalisation. When confronted with
unknown task structures, Teodorescu & Erev (2014) showed that people are able
to adaptively learn purely exploratory or purely exploitation-oriented policies.
However, in their experiment there was no systematic relationship between an
option’s features and its reward, thus leaving out within-task generalisation. Here,
we study how people select actions that guide both processes.

Unlike a CMAB-type task, the tasks we presented to participants were
deterministic, meaning that re-selecting an option would always yield the same
reward. This was done to ensure a clear distinction between exploration and
exploitation in participant decisions. In our experiments, each action had a
set of features (e.g. the brightness of a button or its location in space). The
features associated with an action were predictive of its associated reward. To
examine people’s ability to generalise we presented them with tasks that contained
a large number of choices and a relatively limited number of actions. In this case,
generalising over previous observations is necessary for optimal performance. We
chose a simple structure to ensure it would be possible for participants to learn
and exploit it when maximising rewards.

This chapter presents the empirical results from four experiments. Our
first two experiments focus on sequential tasks where participants had no prior
information about the underlying reward structure, and where a combination of
exploration – to discover task structure and discover optima – and exploitation
is necessary to do well. The next two experiments provided participants with
training about the reward structures before the task itself to understand the
effect of prior knowledge on participant strategies.

We initially predicted participants would be well accounted by Bayesian
models in our tasks. In general, these models first entail constructing a model of
the world and updating this model in light of new evidence. Second, they consist
of policies on how to select future actions based on those beliefs – namely the
uncertainty one holds about the value of unobserved actions, and their expected
outcomes. More specifically, and more qualitatively speaking, we predicted
participant would select globally informative actions guided by their measure
of uncertainty in order to learn the underlying task structure. We also predicted
participant would be able to trade-off between exploration and exploitation, and
favour rewarding actions after a preliminary phase of exploration. Finally, we
expected participants would be able to improve their performance across similar
tasks by re-using the structure learned in previous tasks.

To foreshadow, we find that, across multiple experiments, some participants
selected actions that resolved uncertainty about the underlying structure of the
task, and traded off between exploration and exploitation in order to maximise
reward. These participants were able to transfer knowledge across tasks and
gradually improved their performance. On the other hand, a significant number
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of participants engaged in purely exploratory behaviour, consistently preferring
to choose novel actions despite them being relatively unrewarding. Our results
highlight the importance of studying individual differences to better identify the
multiple factors that influence human behaviour, and of accommodating these
differences in models of learning and exploration.

2.2 Experiment 1

Across our four experiments, participants were given a sequence of grids composed
of 9-by-9 arrays of tiles (see Figure 2.1), with each tile corresponding to a possible
action. In this chapter, we limit our analysis to the first three grids presented to
participants (out of nine), as the latent task structure changed after that point.
We study the behaviour of participants when the underlying structure may change
in Chapter 6. The grids studied here shared a similar underlying task structure:
they had the same kind of relationship between features and rewards, but details
of those relationships varied. In our experiment an action consists of selecting an
individual tile, which has two features: its horizontal (x), and vertical position
(y). Participants had to select tiles to maximise their cumulative rewards over
20 choices in each grid. The task presents a classical explore-exploit trade-off:
Succeeding requires carefully balancing between choosing new tiles to learn about
the underlying reward structure or re-selecting tiles that were observed to be
rewarding. In Experiment 1, participants received no prior knowledge about the
reward structure of the tasks, nor about whether the tasks were related to one
another in any way.

The aim of our first experiment was to understand how people select actions
to learn about the structure of their environment, and achieve goals within
it – and do so across a sequence of potentially related tasks. Motivated by
people’s observed ability to extrapolate from sparse data and learn functional
relationships (Lucas et al., 2015; Wilson et al., 2015; León-Villagrá et al., 2018),
and by the successes of Bayesian models in active search tasks (Schulz et al.,
2017b; Wu et al., 2018; Borji & Itti, 2013), we predicted participants would be
able to generalise from previous observations and improve by using their growing
knowledge of the underlying task structure to select better actions. We measure
this by looking at participants’ ability to select more rewarding tiles as they
collected more information within the same grid, and whether they demonstrated
confidence in their knowledge by repeatedly selecting (i.e., exploiting) optimal
actions. Given people’s ability at taking advantage of the structure inherent
in real-world tasks when learning and trying to achieve goals (Gershman et al.,
2010a; Wilson & Niv, 2011), we predicted participants would be able to re-use
knowledge across grids, since they shared the same structure, and would improve
their performance from one grid to the next.

We also studied the (Euclidian) distance between participants’ selections
throughout the task to better understand their behaviour. Distance between
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Figure 2.1: Grid presented to participants after 5 observations. Note that in
Experiment 1, the rewards disappear shortly after a tile has been selected (1.5
seconds).

selections is a useful marker of different exploration strategies. For example,
participants who seek to reduce uncertainty about the task structure are likely
to select tiles that are far apart from each other, as these tend to yield more
information about the broad shape of the reward function, in addition to having
more uncertain rewards themselves. We call these selections globally informative
actions. In contrast, participants might sample tiles adjacent to their previous
observations, e.g., because they believe they are close to a maximum or because
they want to observe local gradients. We call this kind of selection local search.

2.2.1 Methods

We recruited 79 participants using Amazon’s Mechanical Turk service. They
received $0.75-$1. Participants were told their rewards would be doubled if
their final scores were in the top 10 percent. Following the instructions given to
participants, we excluded participants whose performance was worse than chance
(n = 3). We also excluded participants who failed to select more than 2 different
tiles on the majority of grids (n = 5), as it showed a lack of engagement with the
task.

The three grids analysed here used a reward structure where one location
(xm, ym) was sampled uniformly at random in each grid, and the grids’ maximum
rewards m were sampled independently from N(µ = 200, σ2 = 50). The reward
r for a given tile location (x, y) was exponentially decreasing with its Euclidean
distance d from that maximum-reward tile rounded to the nearest integer:

r(x, y) = C · e−k·d((x,y),(xm,ym))
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We chose an exponential relationship between features and rewards to ensure
there would be a clear advantage for participants who discovered the maximum-
reward tile. We chose a constant (k = 0.4) that led to large differences between
the maximum and its closest neighbors while making it unlikely that any tiles
would have rewards of zero or one. We used a random maximum reward in order
to make it difficult for participants to know they had found the most rewarding
tile without knowing the reward structure of the task.

When a tile was selected, the reward was displayed on the tile for 1.5 seconds
and added to the cumulative score on the current grid. Participants could re-
select tiles they had previously chosen. Participants were only told there may be
patterns underlying the distribution of rewards, but were not given any explicit
information. There were no cues or markers to indicate previously selected tiles
throughout a grid.

2.2.2 Results

For this and all subsequent experiments, we report the normalised scores (between
0 and 1), by dividing each reward by the maximum possible reward in that
grid. We were first interested in seeing whether participants were able to
recognise similarities between tasks. We use a general linear model (GLM),
with the reward as outcome variable. The turn and grid index were used as
predictor variables. Both the turn (b = 0.02, se = 0.001, p < 0.001) and the
grid (b = 0.05, se = 0.005, p < 0.001) were significant factors. Following our
hypothesis, participants selected better tiles over time, suggesting that they were
able to exploit the underlying reward structure. Participants also improved
their performance across grids, suggesting they were able to transfer structural
knowledge across tasks (see Figure 2.7).

As a simple measure of a participant’s propensity to explore, we used the
proportion of actions that selected a previously unseen tile (“exploration”) versus
re-selecting a previously seen tile (“exploitation”). This distinction is more
natural in our tasks than in a traditional stochastic bandit task, as in the latter
it can be informative to re-select previously-seen tiles to learn about their reward
distributions. There were substantial behavioural differences in how people
traded off between exploration and exploitation among participants, and in the
cumulative rewards they collected (M = 0.49, SD = 0.30) (see Figure 2.2).

Twenty-two participants (31 percent) rarely re-selected tiles more than twice
in the majority of grids. We call these participants full explore (FE) participants.
We chose this criterion to account for possible accidental re-selections, and the
possibility that participants would change strategy in one of the three grids. This
followed the assumption that if a participant never re-selected a tile in two grids
but balanced exploration and exploitation in the third, they would still be best
described as a full-explore participant.

We call the other participants (n=49), that traded off exploration and
exploitation, Explore-Exploit (EE) participants. We show examples of FE
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Figure 2.2: Each point represents a participant. The y-axis shows the average
reward of a participant across all three grids. The x-axis is the proportion of novel
selections across all three grids. A value of 1 would mean only selecting new tiles, 0
only selecting the previously-selected tiles.
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participants in Figure 2.3 and 2.4, and of EE participants in Figure 2.5 and
2.6.

Figure 2.3: Selections of a Full Explore participants across all three grids. The
green cross marks the initial observation. Markers indicate observations, and a darker
shade means an observation was later in the trial. Numbers indicate the index of the
closest observation marker. The colour of a tile indicates its associated reward value
(the darkest is the maximum).

Figure 2.4: Selections of a Full Explore participants across all three grids.
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Figure 2.5: Selections of an Explore-Exploit participants across all three grids.

Figure 2.6: Selections of an Explore-Exploit participants across all three grids.

EE participants improved across tasks (b = 0.07, se = 0.006, p < 0.001) (see
Figure 2.7), supporting our hypothesis that participants who used the underlying
task structure to direct their search were able to re-use what they had learned to
a new task.

Across all participants, the proportion of exploratory selections correlated
negatively with score (r(140) = −0.71, p < 0.001), and FE participants earned
lower scores than EE participants (t(69) = 5.77, p < 0.001, d = 0.15). Their
average scores barely improved from one grid to the next (Figure 3; b = 0.02, se =
0.008, p = 0.06).

We used a logistic regression model to evaluate participants’ ability to find
the maximum across grids. More participants found the maximum as they went
on with the grids, hinting that they were better at utilising the underlying task
structure (b = 0.64, se = 0.11, p < 0.001). Whether participants were engaging
in full exploratory or explore-exploit strategies did not predict if they found the
maximum in the tasks (b < 0.001). Participants were significantly better than
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Figure 2.7: Performance of FE participants (n=22) and EE participants (n=49) in
Experiment 1 across all three grids. Error bars in this and all subsequent plots reflect
standard errors of the mean.

chance at finding the maxima (0.65 of grids, vs. upper bound chance proportion
of 0.25; χ2(1, N = 1174) = 188.1, p < 0.001).

Participants had overall a strong ‘local bias’ in their sampling, where they
choose tiles close to their last choice more often than chance given the distribu-
tion of inter-tile distances (t(151) = −50.8, p < 0.001, d = −2.34) (see Figure
2.8). This suggests that participants engaged in local search strategies, rather
than globally informative actions. Both EE and FE groups showed this bias, with
adjacent tiles selected in 49% of FE participants’ exploratory choices (SD = 0.17)
and 39% for EE participants (SD = 0.17).

2.2.3 Interim discussion

Experiment 1 showed that some participants were able to learn the underlying task
structure when it was new and traded off between exploration and exploitation
to maximise their rewards. These participants transferred knowledge across
tasks that shared similarities in their underlying structure. However, a large
proportion of participants had a strong tendency to explore in circumstances
where exploitation would have yielded much higher scores, preferring unobserved
tiles over known tiles with a high reward value. Why did so many participants
adopt such an extreme exploratory policy? One possibility is that they were
motivated to learn more about the reward structure, or ensure they had found
the maximum possible reward, in line with the inherent curiosity bias observed in
people (Kidd & Hayden, 2015; Gottlieb et al., 2013). We also considered this may
be owing to a misunderstanding of the instructions or a lack of incentive, though
FE participants presented some evidence for learning the underlying structure,
even if this was not reflected in their score.
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Figure 2.8: Average distance between selections of EE and FE participants in
Experiment 1 at each turn. Distribution over distances are presented with quantiles
and kernel density estimations. We use Euclidian distance between selections, with
0 counting for a re-selection of the previous click. The dotted line represents the
average distance between all tiles in a grid. The shape of the distribution is drawn
using a (normal) Gaussian Kernel Density Estimate.

We also observed a locality bias in participants’ choices. This may have been due
to the memory demands of the task. Generalising from unavailable observations
might be particularly taxing, and could have led participants to adopt policies
that alleviated the complexity of the task. For example, if participants tracked
local gradients in rewards and followed increasing rewards, this would only require
tracking 2-3 past observations while being less demanding than computing a
surrogate model over the general task structure. This would be consistent with
the local search strategies exhibited in other domains such as causal learning
(Bramley et al., 2015) and category learning (Markant et al., 2016b), and the
idea that people adapt their high-level strategies to make the most of limited
resources (Lieder et al., 2014). For FE participants, the local bias during
exploration could reflect a systematic and memory-efficient policy for exhaustively
searching a subset of the tiles for a maximum. We also consider the possibility that
participants were ”lazily” biased toward nearby tiles as it implied less distance
between selections.

In Experiment 2, we presented participants with the same task structure as in
Experiment 1, but with changes designed to understand and potentially reduce
their strong tendency to explore new tiles. These included persistent indicators of
explored tiles’ rewards, checks of participants’ understanding of the instructions
and a different incentive structure.
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Figure 2.9: Experiment 2: Instructions prior to practice grid. Participants were told
explicitly they could re-select, and were informed the scores would remain observable.

2.3 Experiment 2

In this experiment, the reward associated with a given tile is displayed continu-
ously once it has been observed. We hypothesised that with observations remain-
ing visible, the overall reward pattern would be more evident. We predicted that
participants would be able to make more globally informative actions (implying
that exploratory selections would be more distant from each other). Because of
the underlying structure being more evident, we also assumed fewer participants
would engage in full exploratory behaviour.

2.3.1 Methods

We recruited 72 participants using Amazon’s Mechanical Turk service identically
to Experiment 1. Participants all received a base payment of $0.75. The reward
scheme differed from that in Experiment 1: rather than granting bonuses to the
top 10 percent, we gave all participants a bonus proportional to their cumulative
score, up a maximum of $0.75. We excluded participants who failed to select
more than 2 different tiles on the majority of grids (n = 4). In Experiment 2
when a tile is selected by a participant the reward is continuously displayed on
the tile and is added to the current cumulative score on the current grid.

We added explicit instructions to tell participants they could re-select tiles
(see Figure 2.9), and added a pre-task questionnaire to make sure participants
understood these instructions. The questionnaire also required participants to
understand their goal was to maximise reward (as opposed to discovering the
underlying pattern, or finding the maximum). Participants were not allowed to
proceed with the task until they answered all questions correctly (see Figure 2.10).
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(a) Questionnaire part 1. (b) Questionnaire part 2.

Figure 2.10: Experiment 2: Pre-task questionnaire. Participants were not allowed
to continue before having selected the right answer.

2.3.2 Results

We predicted that participants would be less prone to full exploratory behaviour
(FE) because of the observable rewards. Contrary to our prediction, a significantly
larger proportion of participants showed FE behaviour in Experiment 2 than in
Experiment 1 (.47, n = 32 vs. .31, n = 22; χ2(1, N = 139) = 18.6, p < 0.001). As
in Experiment 1, the proportion of exploratory selections correlated negatively
with performance (r(134) = −0.75, p < 0.0001). In Experiment 2, explore-exploit
(EE) participants again performed significantly better than FE participants
(t(66) = 9.31, p < 0.0001, d = 0.23). Conducting a similar GLM analysis as
in Experiment 1, we found that EE participants improved significantly across
tasks (b = 0.04, se = 0.007, p < 0.0001), whereas FE participants did not
(b = 0.01, se = 0.006, p = 0.14).

To understand the effect of having observations available throughout the task,
we compare the performance of EE participants in Experiment 2 (EE2, n=36)
to the performance of EE participants in Experiment 1 (EE1, n=49). Overall,
EE2 participants (M=0.58) did slightly better than EE1 participants (M=0.56)
(b = 0.04, se = 0.008, p < 0.001).

This was most pronounced in the first grid (t(84) = 2.18, p = 0.03, d = 0.08).
We conjecture that EE2 participants learned the reward pattern faster, and EE1

participants caught up in subsequent grids. This supports the hypothesis that
visible observations allowed participants to generalise better, by supporting more
global strategies. To test this idea, we looked at the inter-selection distances
between the initial selections of participants. We analyse the first 5 selections
assuming that the most informative actions would be taken in the early stages.
As predicted, the choices of EE2 participants were more global, with greater
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Figure 2.11: Performance of FE participants (n = 49.) vs EE participants (n = 36).

distances than EE1 participants’ choices (t(84) = −2.25, p = 0.03, d = 0.66) (see
Figure 2.12).

2.3.3 Interim discussion

Experiment 1 showed that a large number of participants engaged in full ex-
ploratory behaviour. In Experiment 2, we looked at the effect of leaving obser-
vations visible once they had been selected, under the assumption that it would
make generalisation easier for participants, and thus make them less prone to
over-explore. Experiment 2 showed that some participants were indeed able to
leverage visible observations to conduct more global exploration, which led to bet-
ter overall performances. However, the observable rewards also seemed to add a
further incentive for many participants to exclusively choose novel actions, rather
than maximising rewards. Why did more participants engage in full exploratory
behaviour in Experiment 2? We conjecture that participants might have been
more motivated to observe rewards for new tiles when these remained visible, be-
cause the overall pattern – and the possibility of better understanding it – might
have been more salient to them. In Experiment 3, we sought to better understand
why some participants might want to select new tiles almost exclusively, rather
than occasionally exploiting what they had learned to earn greater rewards. Af-
ter Experiment 1, we suggested that this exploratory behaviour might be due to
an intrinsic epistemic drive in participants. We hypothesise this behaviour will
only occur for new tasks when participants have no prior knowledge about the
underlying reward structure of the tasks, since new observations would not be
very informative if participants are already familiar with the underlying reward
structure.
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Figure 2.12: Comparison of distances between selections of EE participants in
Experiment 1 and Experiment 2 (see Figure 2.8 for details). EE participants in
Experiment 2 selected more ”global” actions (longer distances between selections)
during their first actions.

2.4 Experiment 3

We designed Experiment 3 to control explicitly for the potential epistemic drive
of FE participants by familiarising them with the underlying reward structures
prior to the task. By making the structure clear to participants prior to the
tasks, our primary prediction for Experiment 3 was that fewer participants would
engage in FE behaviour. We presumed the intrinsic motivation of observing new
observations would be attenuated when participants did not gain new information
about the task from those observations.

We also hypothesised there would be weaker or no progress across grids since
participants would already be familiar with the reward structure when they engage
with the first grid. Because of the training, we predicted participants would be
more efficient at finding and re-selecting tiles with high values, and would thus
perform better overall than in Experiment 1 and 2. Experiment 3 was set up
identically to Experiment 2. Participants were told about the underlying pattern
and given three practice grids so they could learn the reward structure prior to
the task.

2.4.1 Methods

We recruited 43 participants using Amazon’s Mechanical Turk service, identically
to Experiment 2, with the following changes: Participants were only recruited
for three grids rather than nine, following the same reward pattern discussed in
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(a) Explanation of the Location rule
given to participants prior to the train-
ing grids.

(b) First practice grid given to partici-
pants to familiarise themselves with the
Location rule.

Figure 2.13: Location rule instructions. The two next training grids do not show
the rewards for all tiles, but participants are told explicitly to select tiles in order to
learn the reward pattern.

Experiment 1 and Experiment 2. We report on the 6 later grids from Experiment
1 and 2 in Chapter 6. Because of the shorter duration, participants were paid
a base reward of $0.2. We used a proportionally larger bonus of $0.6 under the
logic that this would further reduce the relative effects of epistemic drive. Apart
from the training grids presented prior to the task, instructions were identical to
Experiment 2. During the training, participants were told that each grid had one
maximum tile, and the closer a tile is to the maximum the higher the reward (see
Figure 2.13). The first training grid had all rewards displayed and participants
were instructed to familiarise themselves with the nature of the task. The next two
grids were similar to the grids in the actual task (i.e. only observed tiles display
reward values) but participants were encouraged to learn the pattern as well as
they could. Throughout the task, instructions regarding reward maximisation and
the possibility of reselecting tiles were also displayed. We excluded one participant
who failed to select more than two different tiles on the majority of grids and
one participant who reported not following the instructions upon completing the
experiment.

2.4.2 Results

Surprisingly, 37 percent (15 out of 41) of participants engaged in Full Exploration
(FE) in Experiment 3. We used the same criterion as in Experiment 1 and 2. The
proportion of FE participants in Experiment 3 was significantly less than the 47
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Figure 2.14: Average performance of EE participants across all three grids in
Experiment 1, 2 and 3. The error bars show the standard error of the mean. The
plots show significant progress in Experiment 1*, better initial performance* and slight
progress in Experiment 2*, and a better overall performance but not progress across
grids in Experiment 3.

percent we observed in Experiment 2 (χ2(1, N = 109) = 8.82, p = 0.003), but was
nonetheless a higher proportion than anticipated.

As expected, EE participants in Experiment 3 did not improve significantly
across grids, since they had been trained extensively on the rule before the assessed
task started (b = −0.01, se = 0.008, p = 0.112). The average performance of
EE participants was significantly better than EE participants in Experiment
2 (t(61) = 2.29, p = 0.03, d = 0.07) and EE participants in Experiment 1
(t(74) = 3.11, p = 0.003, d = 0.09), suggesting that participants were able to
learn the rule during the training and relied on this knowledge during the tasks.

To understand the effect of prior knowledge on participants’ exploratory
patterns, we compared how EE participants in Experiment 3 (EE3) explored
compared to EE participants in Experiment 2 (EE2). EE3 participants were
significantly more locally biased in their initial five selections (t(359), p <
0.001, d = 1.19). Since they were already familiar with the Location rule, and
it is probable they searched by ascending towards the maximum through small
incremental steps. EE3 participants had a significantly lower proportion of re-
selections (0.19 in Experiment 3 vs 0.28 in Experiment 2) (χ2(1, N = 1367) =
17.16, p < 0.001). Given their higher performance scores, EE3 participants were
likely to have a strategy more adapted to the task than EE2 participants, where
participants were still learning the reward structure. Indeed, EE2 participants
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Figure 2.15: Distance between selections of participants (see Figure 2.8 for details).
EE participants in Experiment 2 had more global observations than EE participants in
Experiment 3. This can be explained by that fact that they had no prior knowledge
about the task structure.

had a tendency to settle on a sub-optimal tile, finding the maximum tile in 0.62 of
grids. EE3 participants took smaller exploratory steps but found the maximum
in 0.81 of the grids (χ2(1, N = 185) = 6.69, p = 0.01).

2.4.3 Interim discussion

We designed Experiment 3 to control for participants’ strong exploratory drive.
We hypothesised that participants’ exploration was motivated by an intrinsic
epistemic drive caused by uncertainty about the task structure. Contrary to our
hypothesis, many participants still engaged in full exploratory behaviour despite
being trained on the task structure prior to the task. Given this result, we
hypothesised that participants might be motivated by observing new rewards
rather than learning the underlying reward structure per se and that this effect
might be emphasised when rewards remain visible after having been observed.
Indeed, in Experiment 2, where rewards remained visible, significantly more
participants engaged in full-exploratory behaviour than in Experiment 1. We
designed Experiment 4 to account for these two factors of epistemic motivation:
1) wanting to learn about the underlying reward structure and 2) wanting to
attend novel information.
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2.5 Experiment 4

Experiment 4 followed the design details of Experiment 3, except that rewards
were not displayed continuously after they had been selected - they are displayed
on the tile and disappear after 1.5s, like in Experiment 1.

Our main hypothesis for Experiment 4 was that fewer participants would
engage in full exploratory behaviour, since the epistemic reward is attenuated
by not having the tiles visible after they have been selected and having training
grids prior to the task. We predicted EE participants would perform similarly
or slightly worse than in Experiment 3, because of the constraints of not having
previous observations visible, but better than in Experiment 1 and 2. We also
predicted we would observe little or no progress across grids.

2.5.1 Methods

39 participants were recruited using Amazon Mechanical Turk. In Experiment 1
and 2, the sample size was larger as participants were subsequently divided into
two different conditions after the initial three grids (see Chapter 6). Participants
were given the same instructions as in Experiment 3. Similarly, participants
were paid a base reward of $0.2 and a bonus of up to $0.6 proportional to their
performance. One participant was excluded for failing to select more than two
different tiles, and one was excluded because their performance was worse than
chance.

2.5.2 Results

In agreement with our hypothesis, only one participant out of 37 engaged in Full
Exploration. This was (strikingly) less than in any other experiment. It supports
the idea that participants’ strategies were driven by an epistemic drive which was
twofold:

First, participants were motivated to reveal the underlying reward structure,
i.e., reducing the uncertainty about the structure of the task, or about the location
of the maximum. Indeed, participants were less likely to engage in FE behaviour in
Experiment 4 (known structure and disappearing observations) than Experiment
1 (unknown structure and disappearing observations), and significantly less in
Experiment 3 (known structure and visible observations) than Experiment 2
(unknown structure and visible observations).

Second, participants were motivated to observe the outcomes of individual
actions. In Experiment 1,2 and 3 a significant proportion of FE participants
selected the maximum but consistently opted for selecting novel options rather
than re-selecting a previous maximum observation, with a preference for actions
that were local to their last one. Participants’ drive to select novel actions
was enhanced by the fact that information did not need to be kept in working
memory. They were less engaged in FE behaviour in Experiment 1 (non-visible
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Figure 2.16: Selections of a participant from Experiment 4 across all three grids.

observations) than Experiment 2 (visible observations), and, similarly, less in
Experiment 4 (non-visible observations) than Experiment 3 (visible observations).
Though EE participants in Experiment 3 performed slightly better than in
Experiment 4, this was not significant (t(61) = 0.93, p = 0.35, d = 0.04).
Participants in Experiment 4 improved their average performance slightly across
tasks (b = 0.02, se = 0.007, p = 0.02).

The average distance between the initial five exploratory selections of EE
participants was not significantly different in Experiment 3 and Experiment
4 (t(309) = −0.90, p = 0.37, d = −0.15). EE participants in Experiment
4 explored significantly more locally than EE participants in Experiment 1
(t(374) = −2.73, p = 0.007, d = 0.47). Like in Experiment 3, this supports
the hypothesis that participants who were familiar with the underlying structure
of the grid were able to find the maximum by taking local exploratory steps
until they eventually found the maximum. The selections of a participant in
Experiment 4 are shown as an example of this in Figure 2.16.

2.6 Conclusion

In this chapter, we have focused on the behavioural analysis of participants
across four experiments to study how people learn to select rewarding actions
in a sequence of novel tasks. We found that some participants were able to
learn the underlying structure while balancing exploration and exploitation to
maximise their rewards across tasks. They improved their performance from one
task to the next by transferring abstract knowledge about their environment.
However, we observed that a significant proportion of participants consistently
engaged in purely exploratory behaviour across tasks, largely ignoring the reward
incentive. We showed that this behaviour could be manipulated by controlling
the availability of information as the learner selected actions, and by giving
participants knowledge before they engaged with the task. We suggest that people
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are motivated by two types of epistemic drives: 1) to reduce uncertainty and learn
about the structure of the task and 2) to observe new evidence, regardless of its
informativeness about the global task structure. The latter was evident when
participants continued valuing new actions over maximising rewards, even when
they were familiar with the task structure.

Different potential mechanisms underpinning curiosity have been discussed in
the literature, and could be connected to how people learn in new environments
when combined with trying to achieve goals or maximising utility. One such
strategy is to entirely dismiss reward feedback, giving rise to a strong novelty
drive. This novelty search mechanism has been been shown to be very successful in
the context of Evolutionary Strategies when learning policies for tasks with tricky
reward functions (Lehman & Stanley, 2011). Dismissing rewards could be one of
the exploratory strategies in the human adaptive toolbox. Additionally, some
studies have shown that people are biased towards surprise (Gottlieb et al., 2013;
Itti & Baldi, 2006). Selecting new actions would make sense under the assumption
of possible change, or if one believes that the environment is adversarial (i.e.
trying to fool the learner). Third, the idea of epistemic actions could explain
part of people’s strong drive to select new actions, especially under the constraint
of cognitive load, when keeping previous observations in memory is expensive
or unrealistic. Epistemic actions refer to actions in the world that help solve
problems by changing the mental state of the agent, as opposed to performing
computations in the head (Kirsh & Maglio, 1994). An example of this behaviour
is the use of sticky-notes, or of arranging documents in a way that makes it easier
to retrieve them rather than by memory alone. In the case of our experiment,
observing new information might have been perceived as much cheaper than the
possibility of generalising from few observations.

Recent accounts have presented the combination of uncertainty directed search
and random exploration as the main mechanisms behind people’s strategies (see
e.g. Gershman, 2018; Schulz & Gershman, 2019). These results initially stem
from research with experimental designs restrained to limited action-spaces (e.g.
two- or four-armed bandits (Wilson et al., 2014; Speekenbrink & Konstantinidis,
2015). More recent work has studied the behaviour of people on larger decision
spaces (Schulz et al., 2017b; Wu et al., 2018) and concluded that the best
account for human behaviour comes from a combination of a Gaussian Process
model, to model human generalisation, and uncertainty directed search strategies.
Our experiments show that the behaviour of participants largely deviates from
the qualitative predictions of such models. Instead, novelty and local search
seem to be prominent factors behind people’s strategies. It seemed evident
that many participants relied on the use of simple heuristic strategies rather
than constructing a model of their environment to select actions that maximise
information or rewards. We highlight that studying individual differences amongst
participants can help us better understand the complex mechanisms at play during
active learning in new environments. We hope that by pointing out surprising
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facets of human behaviour, this empirical study can guide the design of better
computational models of human learning and exploration. In the next chapter,
we develop a computational framework to gain further insight into people’s
representations and strategies when learning in new environments.



Chapter 3

Learning the structure of the
world and simpler heuristics:
Toward a general model of
human exploration in vast
decision spaces

3.1 Introduction

In the previous chapter, we found that people used diverse and qualitatively
different strategies to maximise rewards in new environments. For example,
participants differed in the type of search they conducted (e.g. global vs local
search), in how much they explored, and in their overall performance. Across
our four experiments, the type of strategy used by participants was influenced by
the environment they were presented with. This was made evident by the group
level differences we observed. However, differences were also observed amongst
participants within the same experimental context. In the first three experiments,
we found systematic differences between subgroups of participants, both in how
much they explored, and in their performance.

In Chapter 2, we categorised the types of behaviours solely according to peo-
ple’s propensity to explore. Though this was sufficient to highlight the important
differences in behaviour observed across participants, the approach remains rather
limited. Only looking at one metric (i.e. the explore-exploit ratio) does not lead
to an understanding of the fine-grained differences and similarities between par-
ticipants, nor the processes that can explain them. This chapter describes a
modelling framework where the strategies used by participants can be explained
in terms of their underlying processes.

Characterising individual differences is typically not a central aspect of the

29
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design of cognitive models. Often, cognitive modelling relies on data that is av-
eraged or aggregated across subjects, and ignores individual variation (Navarro
et al., 2006). If the performance of participants truly is the same except for the
noise, this has the potential benefit of removing the effects of the noise, thus yield-
ing a more accurate representation of the underlying psychological phenomenon.
If there are genuine differences amongst participants however, averaging the data
can lead to misleading results and yield models that look nothing like individuals.
Navarro et al. (2006) give as an example for this, an experiment where partic-
ipants are asked which number is most unlucky. Depending on their culture,
people might report numbers such as ‘13’ (originally from a European tradition),
‘4’ (4 is considered unlucky in Chinese tradition) or ‘87’ (87 is considered an un-
lucky number for Australian cricket players). When averaging the data from the
unlucky number experiment, we would get a number that was not given by any of
the participants. Though the primary goal of cognitive modelling is to abstract
common cognitive processes, this simple example shows how important it is to
also ask how people are different.

In the literature on explore-exploit type problems, much of the modelling
effort has been concerned with comparing different classes of models to determine
which model makes the best predictions about the data. A wide range of models
have been examined in relationship to people’s decision-making in such problems,
ranging from diverse heuristics to more developed learning models. Typically, a
model M consists in a set of structural assumptions S, and in parameters θ whose
meaning is specific to the model, given the choice of S. In cognitive modelling,
the structural assumptions S usually correspond to hypotheses about underlying
cognitive processes (e.g., a given learning model, or a decision strategy). The
task of studying individual differences can be difficult as differences can be
expressed both in their variation in parametrisation of a model (θ) when fit
individually to participants, but also in the class of model that best describes a
given participant (see e.g., Borji & Itti, 2013; Steyvers et al., 2009; Speekenbrink
& Konstantinidis, 2015; Schulz et al., 2017b).

In order to simplify this process, we develop a modelling framework within
which the behaviour of participants can be represented and measured in a contin-
uous parameter space. Rather than modelling participants using different classes
of models, we design our modelling framework following the method of model ex-
pansion. Model expansion consists in designing a general model that includes the
subset of special case models (e.g., a given heuristic, or a learning model). One
motivation behind model expansion comes from the observation that scientific
progress is driven by model checking and model revision, as opposed to through
model comparison and model selection (Gelman & Shalizi, 2013). Many studies
focus on the practice of model selection, which often assume the true model to be
in the set of hypotheses considered. Unfortunately, this leads to very few studies
engaging in model checking, or reporting their process of model revision in their
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studies (for a discussion, see Gelman & Shalizi, 2013). We show here how the
process of model expansion can help design richer and better predictive models to
explain human behaviour, and is better inclined to the practice of model checking
and model revision.

We first present desiderata for a general model to motivate our approach.
Second, we describe our computational framework, and the psychological theories
it carries. In a third part, we conduct an initial model check by focusing on
both qualitative and quantitative aspects of model simulations, as well as the
participant fits. We then conduct model checking against the experimental
data and discuss some of the limits of the model. We suggest how it could be
further expanded. Finally, we present a model-based analysis of the experimental
data presented in the previous chapter data. Having introduced our modelling
framework, we focus more specifically on the modelling of individual differences
in the next chapter.

3.2 Desiderata for a general model of human

search

We explain here what we believe to be the role of a cognitive model that attempts
to account for human learning and decision making in reward maximising tasks,
and how such a model can be evaluated.

We can separate models into two broad approaches: scientific and technological
models. A scientific model aims to provide insight into understanding the
“true” cognitive mechanisms that give rise to certain behaviours. Technological
models are more concerned with being able to either predict, control or imitate
a given phenomena. While scientific models should also be evaluated along
those measures, it reduces to a “technological” view if it limits itself to those
goals. In contrast, a scientific model places more importance on its explanatory
value and interpretability (Bernardo & Smith, 2009; Navarro, 2019). One
problem with limiting the evaluation of a model to a close approximation of the
empirical data is that it emphasises a focus on quantitative details while missing
important qualitative patterns in the data. As Box (1976) famously remarked,
“Since all models are wrong the scientist must be alert to what is importantly
wrong. It is inappropriate to be concerned about mice when there are tigers
abroad.” Qualitative model evaluations are thus of primary importance, and
particularly so in the psychological sciences where the relationship between the
empirical data and the underlying cognitive processes remain poorly understood.

In designing a general model, we aim to have a model broad enough that
it captures the different hypotheses at hand. Perhaps more ambitiously put, a
general model should strive to take into consideration the diverse theories
available in the literature. Unifying models have been responsible for
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important theoretical progress, resolving conflicts between contrasting theories.
For example, Griffiths et al. (2007a) showed that exemplar and prototype models
of categorisation (and everything in between) could be subsumed by a more
general density estimation model based on the hierarchical Dirichlet process.
Similarly, Lucas et al. (2015) showed that the conflicts between similarity-based
models and rule-based accounts of human function learning could be captured by
a unique model that combined their strengths.

In our case, we define our general model as a mixture of different components,
with each carrying a specific hypothesis about a psychological process or strategy.
When fit to a participant, the importance of each component is expressed through
a given parameter of the model - and each participant behaviour is summarised
as a combination of these parameters. The model reduces the complexity of
the data into a succinct explanation of participant behaviour given by
the parametrisation of the different model components. This implies a trade-off
between the flexibility of the model – allowing it to capture diverse hypotheses
– and the simplicity of the model – constraining it to few, or ideally, a single
explanation for a given behaviour.

If the parameters are cognitively meaningful, participant behaviour and model
simulations should carry qualitative and quantitative similarities when parameter
values coincide. The model should thus be checked for specific aspects, both
qualitatively and quantitatively. For example, can we accurately explain the
performance of participants, the distance between their selections, when different
types of exploration occur across trials, or the degree to which they explore from
the cognitive processes assumed in the model? Furthermore, if the model can
capture differences that are empirically distinguishable, the model should be
recoverable. This means that when fitting “fake” data, i.e. model simulations,
the model should give back the generating parameters. To ensure that the number
of free parameters used in the model is not larger than needed, a general model
should yield participant fits and predictions that are robustly better than
simpler models across participants. Indeed, successful model predictions on
participant selections outside of the data the model was trained on guarantees
the model is able to capture essential aspects of their behaviour.

3.2.1 Summary

In summary, we design our model with the aim of meeting the following criteria:

1. Flexible and capture a broad set of hypotheses

2. Offer succinct and interpretable explanations

3. Recoverable parameters

4. Identify distinct phenomena observed in the empirical data

5. Reproduce similar patterns of behaviour through simulations
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6. Provide better participant fits and predictions than simpler models

In the next section, we outline and motivate the different components used in
our model to capture different mechanisms of human behaviour in goal directed
exploration, as studied in Chapter 2.

3.3 A general model of human decision making

in explore-exploit problems

3.3.1 Model summary

Before presenting each model component in depth, we present in the box below a
brief summary of the general model, its likelihood function and the different free
parameters fitted to participants. The model consists of model based components,
that rely on a Gaussian process model to capture the human ability to generalise
from past observations and learn the structure of the world, and on simpler (model
free) heuristic strategies. Model based strategies have the benefit of allowing for
efficient and planned exploration, and often require less data, while model free
strategies are less computationally expensive and can at times be more adaptive
since they do not require an accurate representation of the environment to be
effective.

General terms

x: feature vector of an action e.g. location (x, y) and brightness of tile
y: reward/outcome of an action (point value)/
a(x) : model scores or acquisition function
{xn, yn}: actions selected so far/observations
θ: Gaussian Process kernel hyper-parameters

General Model

a(x) = softmaxτ (α · µ (x; {xn, yn} , θ) + β · σ (x; {xn, yn} , θ) +
ν·novelty (x; {xn, yn}) + γ · greedy (x; {xn, yn}) + λ · local-search (x; {xn, yn}))
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Model weight parameters fit to individual participants

τ : softmax temperature (model confidence, or value sensitive actions)
α: GP expected mean, or reward driven actions.
β: GP variance, or uncertainty driven exploration.
γ: greedy re-selection of the maximum known value.
λ: local search component.
ν: random exploration, or novelty bonus.

Model likelihood

L(Θ|x) = softmaxτ (a(x|α, β, γ, λ, ν))

with Θ = [τ, α, β, γ, λ, ν].

3.3.2 Representing the world

In this section, we discuss the general computational problem of learning about
the structure of the world while having to achieve goals within it. Having done
this, we look at this problem more specifically by dividing it into two distinct
problems: First, how do I represent the world (or task) and update my beliefs in
light of evidence? Second, given my current beliefs about the world, what is my
policy to achieve my goals?

One critical aspect of our experimental tasks was the large number of possible
actions. Participants were presented with 81 possible choices and only had 20
selections in each grid. Much like in the real world, the outcome of an action
(i.e. a tile) in the grids was not independent of the other available actions.
Participants could learn the underlying structure of the task by predicting the
outcome of unseen actions given their previous observations. In a first part, we
describe our model of (within-task) generalisation in people, and how it relates to
different search strategies.

When trying to maximise rewards, a participant might ask themselves: “What
is the value of an action I haven’t tried before?” This can be framed in an induc-
tive way: “How can I generalise from my previous observations to unseen ones?”.
In this case, the search for the most rewarding option is guided by knowledge
about the abstract relationship between the different options (Gershman & Niv,
2015).

A standard Bayesian approach to predicting rewards would assume the learner
begins with a world model, capturing a priori beliefs about the task structure
(Courville et al., 2006). Learning how the different features x of a given context
relate to the rewards y is equivalent to the problem of learning a function f(x).
The model is specified only up to some set of unknown parameters, θ that specify
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some properties about f(x), like which features are relevant to the task, or how
they influence the expected reward of each action. Learning is interpreted as an
attempt to recover the parameters of the generative model that wants to explain
the observed events (i.e. the observed cues and outcomes, {xn, yn}Nn=1). We
can encode background knowledge through a constrained space of hypotheses Θ,
where each hypothesis θ represents a possible world structure that could explain
the observed data. Finer-grained knowledge comes in the prior probability P (θ),
the learner’s degree of belief in a specific hypothesis prior to the observations.
Bayes’ rule (Bayes, 1763) updates priors to posterior probabilities P (θ|{xn, yn})
given the observed data {xn, yn}:

P (θ|{xn, yn}) ∝ P ({xn, yn}|θ)P (θ)

.
We can exploit this probabilistic model for f(x) when making decisions about

the next observation, while integrating out uncertainty. Given such a model, the
agent must decide how to act when maximizing long term reward. This is similar
to the computational framework of Bayesian Optimisation (BO) (Snoek et al.,
2012), which consists of a model to represent the world and a (myopic) policy to
act upon that representation. By constructing a model that takes into account all
previous observations of f(x), we can find the maximum of difficult functions with
relatively few evaluations when compared with methods that make use of local
gradient or Hessian approximations. In the next two parts, we will first present
how to construct such a probabilistic model and then the different policies that
can be used to trade off between exploration and exploitation. We will discuss
how these models can be useful to understand how people might learn, generalise
and maximise reward across tasks.

3.3.3 Representing the world with Gaussian Processes

An agent with prior beliefs that match the underlying structure of the task will
be much faster at finding the best action to take. The Gaussian process (GP) is a
powerful and attractive prior distribution to express our assumptions about what
kind of functions are plausible, since it does not require any arbitrary postulations
about the parametric form of the unknown function (Williams & Rasmussen,
2006). The GP is defined by a collection of random variables, any finite number
of which have a joint Gaussian distribution. The support and properties of this
distribution are determined by a mean function m(x) and a covariance function
k(x,x′), where

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)]

A key feature of GPs is that they enable us to be explicit about the different
assumptions of our models, and their prior knowledge about the task. In
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contrast to neural network function approximators, they allow for psychologically
interpretable parameters. For an overview of Gaussian processes, see (Williams &
Rasmussen, 2006). A Gaussian Process model relies on the covariance function to
express a rich distribution over functions. In many applied problems, it is common
practice to choose a general covariance function, like the Squared-Exponential
kernel (SE) or Matérn 5

2
kernel, to avoid restraining the space the of possible

functions (Snoek et al., 2012). The SE kernel is the most popular and default
kernel for GPs and SVMs. This is due to its properties: it is universal, can be
integrated against most functions and has only two parameters. Every function
in its prior has infinitely many derivatives. However, sample functions with the
SE co-variance function are sometimes seen as unrealistically smooth for practical
optimization problems, so the Matérn 5

2
kernel is sometimes preferred.

Figure 3.1 shows random samples from varying kernel functions (SE, expo-
nential and linear kernels) to illustrate the different functional assumptions they
can express. To draw a random function from a GP, we simply draw from the
corresponding multivariate normal (with the co-variance matrix defined by the
kernel function).

Figure 3.1: Samples from different kernel functions. These samples illustrate the
different assumptions a kernel function can capture.

GPs have been have been successful at capturing human biases when making
extrapolation judgements (Lucas et al., 2015; Schulz et al., 2016), unifying
conflicting theories about how humans learn functions. Since then, they have been
used to model the human ability for generalisation in search tasks (Schulz et al.,
2017b; Wu et al., 2017; Borji & Itti, 2013; Schulz et al., 2018b). In Figure 3.2, we
show how a GP might represent one of the grids presented to participants in the
experimental framework, given the previous observations.
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Figure 3.2: Expected mean and variance of GP model (integrated over different
MCMC samples) conditional on previous observations. The rightmost grid shows the
true reward structure. The white circles show two initial observations of a participant.

We use the Squared Exponential kernel (SE) in our model. The SE kernel
assumes the same smoothness applies globally over the function. The SE kernel
is governed by two parameters: the length-scale l and the variance σ2. The length-
scale accounts for the “wiggles” in the function, and how far it can extrapolate
from the data. The variance defines the average distance between the function
and its mean (basically a scale factor).

kSE = σ2 exp(−(x− x′)2

2l2
)

To give an intuition for the effect of the length-scale on the kinds of hypotheses
considered likely by the GP, we show examples of different samples for different
parameter values in the 1D and 2D case in Figure 3.3 and 3.4.

l=1 l=2

Figure 3.3: 1D samples from the SE kernel for different length-scale values
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l=1 l=2

Figure 3.4: 2D samples from the SE kernel for different length-scale values.

We take a fully Bayesian treatment, as presented in Snoek et al. (2012), by
getting samples from the posterior over GP hyper-parameters at each time step.
These samples can be acquired efficiently using slice sampling, as shown by Murray
& Adams (2010). This allow us to integrate out the hyper-parameter uncertainty
out when computing the acquisition function score.

Each grid is considered independent of the other in our task, and the samples
are only taken conditional on the observations in the current grid. We discretise
the GP predictions on the grids by taking the value at the centre of each tile.

3.3.4 Modelling guided search

The GP prior and the data observed so far induce a posterior over functions. In
BO, the next action is selected by using this surrogate model of the unknown
function (the posterior) to evaluate the value of each action. This surrogate
model is represented in essence by the mean and variance of the GP. Minimising
the regret over the complete optimal sequence of actions to find the maximum is
typically computationally intractable. This has led to the introduction of many
myopic heuristics (what we call acquisition functions), which are generally cheap
to evaluate (Shahriari et al., 2016). The acquisition function, which we denote by
a(x) decides what point in x should be evaluated next via a proxy optimization
xnext = argmaxx a(x). The acquisition function is a rule that determines how
to resolve the exploration-exploitation trade-off. One strategy could be to select
the tile with the highest variance, and hence to follow an explore-only strategy,
whereby one would systematically pick the most uncertain option and acquire
more knowledge about the task structure. On the other hand, a model selecting
the highest expected reward would choose the tile that it believes will give the best
reward. By failing to explore uncertain options, this strategy could easily make
one fail to realise that a nearby choice offers a much higher reward. Selecting the



CHAPTER 3. Learning the structure of the world and simpler heuristics:
Toward a general model of human exploration in vast decision spaces 39

appropriate strategy is a difficult problem given the lack of information about the
function.

In general, these acquisition functions depend on the previous observations,as
well as the GP hyper-parameters, a (x; {xn, yn} , θ). There are a number of
different strategies that aim to solve the explore-exploit problem by relying on
the expected reward and variance under the GP model. For example, Thompson
sampling is a Bayesian algorithm for sequential decision-making that consists
of probability matching on the posterior probability that an option is best. In
other words, the selection of an action is proportional to the probability of it
being the most rewarding action. Thompson sampling has strong optimality
guarantees in sequential decision-making problems and has been shown to have
state-of-the-art empirical performance in many domains (Chapelle & Li, 2011;
Kaufmann et al., 2012). Another popular strategy is the Upper Confidence Bound
(UCB) (Srinivas et al., 2009). UCB is an explicit trade-off between exploration
(the variance function σ2(x; {xn, yn}, θ)) and exploitation function (the expected
reward µ(x; {xn, yn}, θ)):

aUCB (x; {xn, yn} , θ) = µ (x; {xn, yn} , θ) + βσ (x; {xn, yn} , θ)

It selects the option with the upper confidence bound, with β being defined
depending on context. Intuitively, UCB corresponds to select actions optimisti-
cally following the assumption that the most uncertain actions have the potential
to be the most rewarding. The algorithm has been shown to perform efficiently
in a limited number of samples to find the global optimum of many multimodal
black-box functions (Srinivas et al., 2009).

Another popular and successful strategy is to maximize the Expected Im-
provement(EI) over the current best (Jones et al., 1998). This can be computed
analytically under the Gaussian process as:

aE1 (x; {xn, yn} , θ) = σ (x; {xn, yn} , θ) (γ(x)Φ(γ(x)) + N(γ(x); 0, 1))

Figure 3.5 shows the different steps of Bayesian Optimisation, and the
contrasting predictions made by the different acquisition functions discussed
above.
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Figure 3.5: The different steps that define Bayesian Optimisation. Step 2 shows
the contrasting evaluations of three different acquisition functions: UCB, Thompson
sampling and Expected Improvement.

These are just three of the many different acquisition functions in the liter-
ature, with more complex acquisition functions existing, such as entropy based
ones, or strategies involving a portfolio of acquisition functions (for a review,
see Shahriari et al., 2016). While one could be tempted to compare their dis-
tinct predictions on participant decisions, many acquisition functions lack clear
psychological interpretations, and our main goal is to ask: Do people use gener-
alisation to guide their search? Do people rely on a measure of uncertainty when
they explore? To answer these two questions, our model includes of a weighting
parameter α to capture utility driven actions (the expected reward under the
GP µ(x; {xn, yn}, θ)), and a β parameter as an explicit uncertainty-driven explo-
ration parameter (the variance under the GPσ2(x; {xn, yn}, θ)) without further
consideration of alternative transformations of the GP predictions.

3.3.5 Heuristics and biases in human search

Probabilistic models have been able to explain many aspects of human cognitive
phenomena, like how people are able to successfully combine their estimations of
perceptual uncertainty with prior knowledge (Kording & Wolpert, 2004; Tassinari
et al., 2006) or how people learn how to represent uncertain environments in
specific cognitive tasks (Griffiths et al., 2007b; Kemp & Tenenbaum, 2008).
Despite these successes these models have been met with scepticism, primarily
originating from two lines of thought. First, copious evidence has pointed out an
evident gap between human behaviour and probabilistic reasoning (Kahneman
& Tversky, 1982). Second, the computational complexity of probabilistic models
largely surpass the brain’s ability to compute for optimal solutions, motivating a
need for short-cuts and heuristics (Anderson, 1991; Simon, 1955).
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A large branch of research in the cognitive sciences has been concerned
with the heuristics and biases employed by people as tractable solutions to the
problems faced in the real world given the limited computational resources of the
mind/brain. This is achieved by reducing the amount of information in the input
data (i.e. only attending relevant features of the problem), or constraining the
hypothesis space. The computational problems people are often faced with are
so-called inductive problems, where people have to infer a plausible structure from
limited data. A number of studies have thus looked at the kinds of representations
and algorithms people might use that allow for efficient, yet computationally
tractable inference (Sanborn et al., 2010; Bramley et al., 2017; Griffiths et al.,
2015; Daw & Courville, 2008; Bonawitz et al., 2014; Lieder et al., 2018, 2014).

Beyond simplifying the problem, research studies at the algorithmic level
of analysis have considered low-resource policies that aren’t necessarily about
representation per se. In this context, heuristics have been reported to, at times,
outperform full-information strategies and more complex models (Gigerenzer,
2008; Parpart et al., 2018).

In light of this, and inspired by models existing in the literature as well as
patterns observed in participants in our experiments, we consider three low-
resource policies as components to our general model.

Undirected exploration

So far, we have introduced two forms of directed search: Uncertainty driven
search, which adds a bonus to actions based on an agent’s uncertainty about
unseen values, and utility driven search, which selects actions according to their
expected reward. We presented acquisitition functions that combine these two
types of directed exploration, e.g. EI, UCB or Thompson sampling. Beyond
directed exploration, there is also significant evidence in the literature for random
exploration in human search. In fact, recent theories present human exploration
as a combination of directed search and random exploration (see, e.g. Wilson
et al., 2014; Gershman, 2018; Schulz & Gershman, 2019). Random exploration
is perhaps most simply explained with the ε-greedy algorithm, one of the
first and simplest reinforcement learning algorithms. It ignores the value of
information entirely and explores by selecting random actions with probability
ε and maximising with probability 1-ε. By gradually decreasing ε (the agent’s
propensity to explore), the agent will eventually learn the values of the different
actions and select the optimal action.

novelty(x) =

{
0, if xobserved

1, otherwise
(3.1)

In our model, we can express random exploration as a uniform probability of
choosing novel tiles. In our mixture of policies, this can be formalised by assigning
a score of one to all previously un-visited tiles; because of the deterministic
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nature of our grids, re-selecting an observed tile should not be characterised as
an exploratory action. This novelty component thus has a dual interpretation 1)
an inclination to favour new actions and 2) an undirected search strategy, i.e. a
non-preferential way of exploring new actions (Schulz et al., 2017a).

ε-greedy strategy

We introduced the idea of low-cost policies. The simplest, and perhaps most
famous policy in RL problems is the ε-greedy algorithm. It consists in a trade-off
between random exploration (discussed in the previous section) and the greedy re-
selection of the maximum known value. Despite completely ignoring the structure
of the problem, it has been shown to do well in many problems, and after enough
exploration will eventually find the best solution. In support of this greedy
strategy, we define a weight component that assigns a probability weight to re-
select the (last observed) maximum known value. This simple greedy policy can
be described as follows:

greedy(x) =

{
1, if max(xn)

0, otherwise
(3.2)

Greediness is a popular term when describing cheap solutions to complex
problems. An example strategy that could be described as greedy is the “win-
stay, lose-sample” heuristic, a decision making strategy which has been used
to explain how people might sample for hypotheses in the domain of causal
learning (Bonawitz et al., 2014). While myopic and locally optimal (“greedy”)
strategies are very relevant to our study, we restrict our use of the word greedy
to the ε-greedy sense here.

Local search heuristic

In Chapter 2, we reported a consistent local bias in how participants selected new
actions: they displayed a preference for nearby actions. We noted that this was
also reported in the experimental data of Wu et al. (2017) in grid tasks similar
to our experiments presented in Chapter 2, and may correspond to phenomena
in other domains such as causal learning (Bramley et al., 2015) and category
learning (Markant et al., 2016b). A wide range of robust optimisation methods,
such as gradient based methods, rely on local search (Ruder, 2016) and can be used
in combination with global optimisation methods for significant improvements in
terms of efficiency of search (e.g. McLeod et al., 2018; Acerbi & Ji, 2017).

To model a local search heuristic, we use the inverse Manhattan distance
(IMD) to the last observation. We choose the IMD to remain agnostic to the
reward function and too reflect the grid structure of our task.

IMD (x,x′) =
1∑n

i=1 |xi − x′i|
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For the special case where x = x′, we set IMD (x,x′) = 1. For the special case
where x = x′, we set IMD (x,x′) = 1.

To control for the smoothness of the localisation bias, we transform the
distances through a softmax function. For simplicity, and to avoid model over-
specification, we use a fixed decay parameter. We found that fitting the distance
decay temperature to participants led to mismatches when doing model recovery,
due to correlations with the importance of the weight component, and with the
softmax temperature1. We use a temperature parameter of 0.5 to account for a
preference for neighbouring tiles without restraining it to the direct neighbours.
A small temperature of e.g. 0.001 means no local bias (almost uniform weight on
all tiles), while a larger value, e.g. 1, means most of the probability mass is put
on the tiles directly adjacent to the previous selection (see Figure 3.6 for a visual
intuition).

We set the score of returning to the previous observation to 0, given that we
would consider a return to a previously observed tile as an exploitative choice.

local-search(x) = softmax0.5(IMD(x, xn−1)) (3.3)

3.3.6 Value sensitive exploration and noisy behaviour

In the model, we transform the score of the mixture of components a(x) into
probabilities by using the softmax choice rule with inverse temperature parameter
τ :

softmaxτ (a(x) =
exp(a(x)/τ)∑
j exp(a(xj)/τ)

(3.4)

The softmax rule is a popular decision rule in the decision-making literature,
due to its simplicity, its biological plausibility and empirical support (Collins &
Frank, 2014; Daw et al., 2006; Schulz & Gershman, 2019; Speekenbrink & Kon-
stantinidis, 2015). Daw et al. (2006) describe it as follows: “With softmax, the
decision to explore and the choice of which suboptimal action to take are de-
termined probabilistically on the basis of the actions’ relative expected values.”.
Daw et al. (2006) further characterise it as value-sensitive exploration. In their
study, the softmax is put in contrast with undirected exploration, as implemented
through the ε-greedy model. Following them, we adopt here the definition of
value-sensitive exploration for exploratory behaviour as modulated by softmax
temperature. Indeed, for small values of τ , small value differences lead to strong
action probability differences. For large values of τ , the model largely ignores the
predicted values by different model components and simply selects options at ran-
dom, without differentiating exploration and exploitation. It is important to note
that this is different from undirected exploration, like under the ε-greedy model,

1To give an intuition for this, a small softmax temperature (e.g. 0.001) and a weak local
bias (e.g. 0.1) would predict very similarly to a model with a more noisy softmax temperature
(e.g. 0.05) and a much stronger local bias (e.g. 1).
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Figure 3.6: Grid visualisations showing the Inverse Manhattan Distances and
the reward shape of the local search component for different softmax temperature
parameters.
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which picks any option that is not the max-known equiprobably (see Figure 3.7
for a visual explanation). In this case, there is an explicit trade-off between ex-
ploration and exploitation, but with no preferences for what to pick in terms of
novel, or uncertain, options. In the future, it is in this sense that we refer to
undirected exploration.

Figure 3.7: These plots show the probability scores attributed by the model for
small and large softmax temperature parameters, and for an ε-greedy model. We
highlight the difference in predctions made by the large softmax temperature and the
ε-greedy model. ε-greedy implements undirected exploration, whereas larger values of
τ lead to random uniform predictions. Smaller values of τ account for value-sensitive
exploration.

Though high softmax temperatures have been associated with random ex-
ploration (Schulz & Gershman, 2019; Wu et al., 2018), it is more accurate to
say that the softmax characterises random or unpredictable behaviour. A high
softmax temperature parameter can generally be attributed to two cases: 1) the
model captures the beliefs of a participant poorly, or 2) the participants is select-
ing at random. In general, the softmax temperature can be interpreted as the
model’s confidence in predicting an agent’s behaviour given a set of beliefs about
the underlying structure of the environment. In the next section, we explain how
we fit our general model to participants.

3.3.7 Model fitting and model comparison

We fit models to individual participants by using a Differential Evolution al-
gorithm (Storn & Price, 1997) to maximise the maximum likelihood function,
followed by a gradient based optimisation step. We use the L1 penalty on all
weight parameters. From a Bayesian perspective, the L1 penalty can be under-
stood as a sparse prior for model components that favours setting non-significant
components to zero. In this Bayesian framing, the maximum likelihood estimate
(MLE) corresponds to the maximum a posteriori estimation (MAP).

With a general model, we hope to understand how different strategies interact
for each participants, and better understand the salient differences in strategies
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across participants described in our experimental results. One of the aims of a
general model is for it to offer interpretable explanations over different mechanisms
for exploration. Here, each model component represents a distinct behaviour and
mechanism during search. For better interpretability of the model, we normalise
the weight parameters (i.e. all parameters but the softmax) to get their relative
contributions. To ensure that the different parameters are representative of their
contribution to the model predictions when weighted together, we rescale each
component scores over their total range across all predictions.

To illustrate the need for rescaling over the total range, imagine a model
with equal probability weight on the max known tile, and the four neighbours
to the previous selection. The greedy component will put a score of 1 on the
max known, while the (extreme) local bias term will put 0.25 on each neighbour.
To put an equal weight on the five actions the model needs to give four times
more importance to the local bias component than the greedy weight. Rescaling
by the range of each component allows for more intuitive parameters, and would
in the example above yield equal contributions from the greedy and local bias
components.

We did not transform each component output into probabilities at every time
step as this would not take the inter-dependence of scores across observations into
account. For example, in the case of the variance predicted by the GP model,
the scores might be very high early on in a grid, when only few observations have
been made, but would be distinctly lower at the end when many tiles have been
observed. Having the prediction scores transformed into probabilities at each
time step would only keep the relative difference between the different tiles as
information, but not the relative uncertainty over the different tiles as it progresses
over the sequence of observations.

3.4 Model recovery of specific strategy types

As a first evaluation step for our model, we perform parameter recovery for
simulated data generated by “special case” models. In our analysis, we focus
on the parameters recovered by the general model and their interpretability i.e.
how do the recovered parameters relate to, and explain, the behaviours exhibited
by the “special case” model simulations. We focus on explaining three types of
behaviours that are popular in the literature. 1) we simulate from an ε-greedy
model (ε = 0.3 and ε = 0.5). We chose two distinct parametrisation to ensure the
model could reliably capture the correct ε value. We also study simulations from
2) a GP-UCB model (α = 1 and β = 0.8) and 3) a heuristic we name “line-search”,
inspired by some of the participant behaviour observed in our experiments. The
aim of this analysis is to evaluate the ability of our general model to identify
and distinguish qualitatively different patterns of behaviour in an interpretable
way (cf. desiderata 1, 2 and 4, see Section 3.2). We focus on the ability to
reproduce qualitative patterns of behaviour (desideratum 5), the recoverability
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Figure 3.8: ε-greedy (ε=0.5) model simulation. The green cross marks the initial
observation. Markers indicate observations, and a darker shade means an observation
was later in the trial. Numbers indicate the index of the closest observation marker.
The colour of a tile indicates its associated reward value (the darkest is the maximum).

of parameters from simulations (3), the model’s predictive ability and robustness
when fit to actual participant data (6) in Section 3.5.

3.4.1 ε-greedy (ε=0.5)

For all special case models, we ran 71 simulations on the grids presented to
participants from Experiment 1, corresponding to the number of participants
in Experiment 1. We then proceeded to fit the general model to the special case
simulations. Figure 3.8 shows the selections of one of the model simulations across
the three grids, where the model balances random exploration and exploitation
of the max known tile.

When looking at the recovered parameter weights, the greedy component was
the highest contributor (M = 0.71, SD = 0.15) (see Figure 3.9). Because of the
expressivity of the model, some of the other components inevitably capture some
of the random exploration of the simulations. The largest non-greedy weight is
the novelty component (M = 0.10, SD = 0.13), as it attributes a uniform bonus
to non-explored tiles, much like the ε exploration term of the ε greedy algorithm.
The average contributions of the other parameters were all below 0.1.

To better understand the fit parameters and how they relate to the model
predictions, we look at the recovered parameters for a single simulation. Fig-
ure 3.10 shows the normalised contributions of the parameter weights. Of note,
we see that local bias and the expected reward term have non-zero contributions.
Figure 3.11 shows how the different components contribute to the predictions of
the model, and the effect of the softmax transformation. The predictive scores of
the greedy, local bias and novelty components are shown in Figure 3.12. The non-
zero contributions are drastically reduced by the softmax (τ = 0.007), which puts
close to .5 of its probability mass on the max known (as would be expected for
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Figure 3.9: Recovered parameters for ε-greedy (ε=0.5) simulations under the
general model.
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Figure 3.10: Parameter weights for ε-greedy (ε=0.5) simulation under the general
model.

this parametrisation of the model). Across all simulations for ε=0.5, the average
probability mass put on the max known was 0.50 (SD=0.06).

3.4.2 ε-greedy (ε=0.3)

As expected, similar results were obtained for ε-greedy simulations with ε=0.3.
Figure 3.13 shows the selections of one of the model simulations across the three
grids.

The parameter fits were again largely dominated by the greedy term, combined
with small values for the softmax τ parameter (see Figure 3.14).

We inspect the parameters and predictions for a single simulation again.
In this case again, the parameter contributions are dominated by the greedy
term, with some weight contributions from the novelty and β components (see
Figure 3.15). Like with the ε=0.5 example, these are largely squashed by the
softmax. Most notably, this time the model puts around 0.75 of the probability
mass on the max known, which corresponds approximately to the generating
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Figure 3.11: Combined scores of weighted model components and probability
choices after the softmax choice rule is applied on trial 15 of an ε-greedy (ε=0.5)
simulation.

Figure 3.12: Prediction scores of individual components of general model on trial
15 of an ε-greedy (ε=0.5) simulation.

Figure 3.13: ε-greedy (ε=0.3) model simulation.
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Figure 3.14: Recovered parameters for ε-greedy (ε=0.3) simulation under the
general model.
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Figure 3.15: Parameter weights for ε-greedy (ε=0.3) simulation under the general
model.

simulation parameter ε=0.3 (see Figure 3.16). When looking across all model
simulations, the general model put 0.70 probability mass on the max known across
all selections (i.e. 71 models and 60 turns) (SD=0.01).

In summary, we find that the recovered parameters were coherent with the
behaviour of the ε-greedy algorithm, namely greedy re-selection of the max known,
but no preference for the exploratory strategies in the model. We also find that
the amount of exploration could be recovered by evaluating the predicted weight
on the maximum known. In both cases, it matched the true parametrisation of
the ε-greedy simulations.

3.4.3 Line-search heuristic

The next model simulations we study are inspired by some of the behaviour
observed in our experiments, particularly by some of the Full Explore participants.
In Chapter 2, we noted that some participants explored by choosing local gradient-
ascent steps, essentially creating lines of observations to ascend to the maximum
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Figure 3.16: Combined scores of weighted model components and probability
choices after the softmax choice rule is applied on trial 15 of an ε-greedy (ε=0.3)
simulation.

value. To mimic this behaviour, we implement a heuristic model that put
probability mass on 1) the next point in the direction of the two previous
observations (i.e. either horizontal or vertical, and in the same direction), 2)
on the orthogonal tiles from the last observation, 3) on the neighbours of the
maximum, and 4) a random exploration term. This heuristics model differs
slightly from what people do, as they tended to specifically select lines that
ascend reward gradients. We predict the general model will be able to capture
this gradient ascent behaviour in humans through a combination of local search
and the expected rewards of the Gaussian Process model.

We discuss this algorithm and how well it explains participant behaviour
in more details in Section 3.6. A simulation from this model can be seen in
Figure 3.17.

Again, we fit the general model to simulations from the line-search heuristic
model. In this case, the simulations were mostly recovered by the local bias
(M = 0.50, SD = 0.10) and novelty (M = 0.39, SD = 0.12) components of the
general model, corresponding neatly to the observed behaviour of the model.

softmax greedy local
bias

novelty0.00

0.25

0.50

0.75

1.00

Figure 3.18: Recovered parameters for line-search simulation under the general
model.
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Figure 3.17: Line-search heuristic model simulation. The green cross marks the
initial observation. Markers indicate observations, and a darker shade means an
observation was later in the trial. Numbers indicate the index of the closest observation
marker. The colour of a tile indicates its associated reward value (the darkest is the
maximum).

Indeed, the line-search agent explored (almost exclusively) while favouring
neighbouring tiles. Again, we see that the model was able to recover parameters
that were in line with the observed behaviour for another model that was not
directly a sub-case of the general model.

3.4.4 GP-UCB

The final special case we study is a vanilla GP-UCB model simulation (α = 1, β =
0.8) (see Figure 3.19). This model is a popular optimisation model in the Machine
Learning literature Snoek et al. (2012); Shahriari et al. (2016) and has also been
used to model human search in function optimisation and in grid-tasks Borji & Itti
(2013); Schulz et al. (2017b); Wu et al. (2018). This model is directly a special
case under the general model. Unsurprisingly, it was recovered neatly, with α
(M = 0.66, SD = 0.02) and β (M = 0.34, SD = 0.22) parameters as the only
contributing components (see Figure 3.20).

In conclusion, we have shown that our general model is able to recover and
provide interpretable parameters for three types of distinct search behaviours.
Perhaps most importantly, this was the case when the model simulations were not
generated by the general model itself, providing evidence for its broad coverage of
behaviours. In the next part, we test this capacity further by fitting the model to
participants. We then simulate the model forward based on the participant fits
and attempt to recover them. This is to ensure that the model is well-specified,
specifically that it is able to uniquely identify diverse types of behaviours.
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Figure 3.19: GP-UCB (β = 0.8) model simulation.
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Figure 3.20: Recovered (normalised) parameters for GP-UCB model under the
general model. The generating parameters were α = 1 (the expected mean of the
GP) and β = 0.8 (the variance predicted by the GP). The mismatch with the recovered
parameters here is due to the normalisation over the complete range of µ(x) and σ2(x)
from the GP model.
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3.5 Model fitting of participant data and model

simulations

In this section we continue the evaluation of the model to assess its validity and
robustness (desiderata 3 and 4). Our analyses focus in this part on participants
in Experiment 1 (71 participants) as we considered it represented a large and
diverse enough set of participant behaviours for the evaluation of the model.

3.5.1 Parameter recovery with model simulations

We perform parameter recovery to ensure each model parametrisation is meaning-
ful, meaning that it captures distinct behavioural features. Parameter recovery
consists in 1) fitting the general model to participants, 2) simulating data from
the parameter estimates of participant behaviour (i.e. generating “fake” partici-
pant data) and 3) fitting the simulations with the same generating model (Wilson
& Collins, 2019). A weak correlation between the simulated and recovered pa-
rameters would help point elucidate potential failures or biases in the model (see
e.g., Nilsson et al., 2011). This could stem from multiple causes, e.g. non linearly
separable parameters, or simply because the task does not produce diagnostic
data.

We find that in all cases, the recovered parameters were highly correlated to the
generating ones. These results support the existence of the different components
implemented in the model as unique and independent behavioural characteristics
of human exploratory search. These are: 1) “greedy” re-selection of the max
known action, 2) utility driven actions (maximum expected value), 3) uncertainty
driven exploration, 4) local search, and 5) (undirected) novelty driven search.

In Figure 3.21, we plot the correlation between the generating parameters and
the recovered parameters with the generating parameters on the x-axis, and the
recovered parameters on the y-axis. The generating parameters used were the
MLE estimates on all three grids of participants in Experiment 1. We report
rank correlation using Kendall’s tau (rτ ), not to be confused with the softmax
temperature parameter τ .

The rank-correlation between the generating and the recovered expected
utility α parameters was rτ = 0.70, p < 0.001. For the uncertainty parameters
β, the rank-correlation between the generating and recovered parameters was
rτ = 0.52, p < 0.001. For the greedy term γ, the rank-correlation was
rτ = 0.69, p < 0.001. For the local search component λ, the rank-correlation
between the generating and recovered parameters was rτ = 0.75, p < 0.001.
For the novelty component ν, the rank-correlation between the generating and
recovered parameters was rτ = 0.52, p < 0.001. For the large majority of
participants (0.94, 67 out of 71), the softmax had a minimal value (exp(-5),
set as minimum for numerical stability), indicating precise model predictions,
and value-sensitive behaviour in participants. The values were slightly more
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Figure 3.21: Recovered parameters from the model simulations generated from
participant fits. x-axis displays the parameter value fit to participant data. y -axis
displays the parameter value fit to the model simulation observations.

dispersed in the recovered softmax parameters (19 simulations were fit with a
softmax of exp(-5), the minimum possible value), and a median value of 0.02. the
correlation was thus not very strong between generating and recovered parameters
(rτ = 0.18, p = 0.04). This suggests that the model was more sensitive to the
interaction between different independent components when fitting simulations
than when fitting participant data.

As expected, the model log-likelihoods were significantly better when pre-
dicting model simulations (M = −131.45, SD = 49.02) than when predicting
participant selections (M = −155.7, SD = 40.36) (t(143) = −3.21, p = 0.002).
In summary, we find that the rank correlation between generating and recovered
parameters was high across all parameters. This offers strong evidence in favour
of the results of the general model to be reliable. The results may offer some ev-
idence toward the existence of these different model components as independent
psychological processes.

3.5.2 Qualitative analysis of model simulations

In this section we focus on some of the qualitative patterns observed in the
empirical data, and study to what extent these can be found in our model
simulations. To do this, we look at the behaviour of individual participants,
and compare it to a model simulation generated from their set of parameters. We
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also compare the recovered parameters of the model simulation to the generating
parameters in this case-by-case setting.

We first analyse one of the best performing participants, who traded off
between exploration and exploitation and found the maximum value in two of the
three grids, and the second highest tile in the first grid. The participant settled on
a tile within approximately ten rounds and reselected it until the end of each grid
(see Figure 3.22 a). In grid 1 and 2, this participant selected actions that were
relatively distant from one another before doing minimal local exploration and
ending the search with greedy re-selection. In the third grid, the search process
was exclusively local, possibly because the participant’s initial selection was close
to the maximum tile.

The model simulation (see Figure 3.22 b) captured these patterns fairly well,
also finding the maximum value within ten observations, exploring with initial
actions that were relatively distant from one another, and finishing the search
with some local exploration steps. We plot the parameters fit to the participant
data, and those recovered from the model simulation in Figure 3.23. In both
cases, the most important component was the α parameter, or the expected mean
under the GP model. Second was the greedy term. The local bias term and the
novelty term both contributed slightly to the model predictions. The recovered
parameters for the model simulation gave less weight to the novelty term than the
generating parameters, but attributed some to the β term (uncertainty directed
search), despite it not being given any weight in the participant data. Overall,
we found the recovered parameters to be coherent with the parameters fitted to
participants.

Next we look at one participant who engaged in Full-Explore behaviour
(Figure 3.24). This participant preferred to choose tiles adjacent to their previous
selections, with occasional longer jumps. The participant tended to select tiles
near the maximum value tile, and found the maximum in every grid, but never
re-selected it.

The model simulation was able to reproduce this local search behaviour with
occasional jumps, and found the maximum in every grid without re-selecting it
(except from in grid 3 where it was re-selected twice, see Figure 3.24).

As with the previous participant, the main driver was the expected utility
term α, with the local bias and the novelty term being the other representative
components. This was largely recovered when fitting the model simulations,
though the greedy term was given some minor weight, due to the re-selections
in grid 3 (which were presumably driven by the α term, and the local search term
λ).

Finally, we look at the performance of the model simulations and compare
them to the performance of participants (see Figure 3.26). In Chapter 2, we
found distinct patterns of performances amongst participants. Some participants
performed consistently better than others, while many engaged in entirely
exploratory behaviour and largely dismissed reward incentives. Here, we look
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(b) Model simulation based on parameters fit to the participant.

Figure 3.22: Participant observations and model simulations across three grids.
The parameters used by the model simulation were the ones fit to a participant. The
green cross indicates the initial observation in each grid. The green number marks the
trial at which some actions were selected. The relative tile value is marked through
the colour of the tile. The circles show the observations, the darker a circle, the later
in the round it was selected by the participant.
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Figure 3.23: Comparison of parameters fit to participant and recovered parameters
on model simulation.
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(b) Model simulation based on parameters fit to the participant.

Figure 3.24: Participant observations and model simulation across three grids. See
Figure 3.22 for more details.



CHAPTER 3. Learning the structure of the world and simpler heuristics:
Toward a general model of human exploration in vast decision spaces 59

greedy local
bias

novel0.00

0.25

0.50

participant fit parameters

greedy local
bias

novel

recovered simulation weights

Figure 3.25: Comparison of parameters fit to participant and recovered parameters
on model simulation.

at whether the model simulations based on the parameters fit to participants
reproduce these distinct patterns of performance. We plot the performance of
Explore-Exploit participants and Full-Explore participants separately, to highlight
the differences between individual participants. We find that the general model is
able to reproduce the characteristic patterns of performance for both sub-groups.

In summary, our general model can capture important qualitative patterns
such as the amount of exploration, the type of exploration (global vs local),
and performance, by modelling participants through a mixture of distinct search
processes. In the next part we evaluate the predictive power of the general model
and compare it to ablated versions of the model (i.e. by removing components)
to ensure they all contribute to capturing participant behaviour. In Section 3.6,
we discuss some of the limits of the model, and qualitative patterns not captured
through the simulations.

3.5.3 Model robustness and predictive power with com-
parison against ablated models

To assess the explanatory power of our general model, and the potential benefits of
having a mixture of components, we fit it to the full set of participant observations
and compare it to truncated versions of the model. The three truncated versions
of the model we compare the general model to are:

• A GP-UCB only model with a free β parameter, fixed α (=1) with a softmax
decision rule (two free parameters: β, τ).

• A GP-UCB with local-bias model i.e. a free β parameter, fixed α = 1, a
local search parameter and a softmax decision rule (three free parameters:
β, λ, τ).

• A heuristics model, with the search, greedy re-selection and novelty compo-
nents and softmax decision rule (four parameters: λ, γ, ν, τ).
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Figure 3.26: Performance of model simulations according to strategy type (Full
Explore and Explore-Exploit) on left hand side. Right hand side shows corresponding
participant performances.

We limited our comparisons to this subset of possible truncated versions of
the model as they seem plausible as cognitive hypotheses. We also expected the
resulting inferred parameters would inform us of the importance of the respective
components given the L1 penalty imposed during the optimization.

We first compare the model likelihoods on the complete set of participant
observations (i.e. all three grids). We use the Akaike Information Criterion (AIC)
(Akaike, 1974) to take into account the different numbers of parameters across
different models.

The general model provided the best complexity-penalised fit for 63 of 71 par-
ticipants. A Mann-Whitney test shows that the general model (Mdn=318.57)
was significantly better than the next best model (heuristics, Mdn=351.43) when
comparing model AIC scores across participants (U(143)=1921.0, p=0.007). The
model results point out that it was a combination of both heuristic strategies and
generalisation-based strategies which carried explanatory power across individ-
uals, as opposed to one or the other. This offers evidence to support that each
independent component carries explanatory weight at the individual level, and not
only across different participants. One risk of a highly expressive model is that
it overfits participant data, by explaining the noise in participant decisions and
failing to extract meaningful patterns, thus not yielding much predictive power.
To evaluate this, we look at the accuracy of the general model against the sim-
pler truncated versions of the model when predicting out-of-sample participant
selections.
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Figure 3.27: Mean AIC of general model and ablated model versions (lower is
better). The error bar shows the SEM. The dotted line shows the AIC of a model
predicting individual participants actions at random (uniform probability across all
selections).

3.5.4 Model predictions on participant data

To ensure that the general model is not overfitting the participant data by adding
unnecessary components and to evaluate the robustness of fits on unseen data, we
examine the predictive accuracy of models on the selections made by participants
in the third grid, with the parameters fit to the selections in the two initial grids.
Like before, we compare the general model to the heuristic model, a GP-UCB
baseline and a GP-UCB model with local-bias term.

Again the general model had the best predictive likelihood for the majority of
participants (45 out of 71). 13 participants were best predicted by the heuristics
model, 9 participants were best predicted by the GP-UCB local bias model, and
4 by the vanilla GP-UCB model. Because of the presence of outliers in the pre-
diction scores, we use the Mann-Whitney test to compare the predictions of the
general model against the next best model (the heuristics model). The general
model was significantly better with a median predictive negative log-likelihood of
53.27, against a median of 61.83 for the heuristics model (U = 1926.0, p = 0.007).

We have shown the validity, robustness, and interpretability of our general
model through several steps. We first recovered special case behaviours, to
show that the fit parameters were distinct and coherent with the observed
behaviour. Second, we ran simulations on the participant data (71 participants),
and recovered the parameters from those simulations. The parameters were
strongly correlated to the generating ones. We conducted a qualitative analysis
of the model simulations and showed that the model was able to capture and
generate qualitatively distinct types of search behaviour, as well as match the
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Figure 3.28: Predictive negative log-likelihoods of models on third grids (lower is
better), based on the MLEs fit to participant observations in the first two grids. The
error bars show the SEM.

performance patterns of participants. Finally, we compared our general model to
ablated versions of the model and showed that participants were in general better
explained by a rich combination of strategies, both individually and at a group
level. This was also true for out of sample predictions, when the model was fit on
the first two grids to make predictions about participant selections on the third.

In the next section, we focus on the limits of the model by examining some
of the qualitative patterns observed in the data that were not captured by the
general model and discuss how it could be further expanded.

3.6 Limits of the general model

In Chapter 2, we found that many participants were able to transfer knowledge
across tasks. From one grid to the next, they were able to improve their
performance. This was not the case for our model simulations, since we assumed
in the model each task to be independent of the other (see Figure 3.29). We look
at learning dynamics and how transfer can be explained in Chapter 6.

When looking at participants poorly predicted by the model, we find the
model struggled to capture participants who had a sudden change in strategy.
We show a participant who suddenly changed strategy in Figure 3.30. One
possible explanation for this is that participants have a “toolbox” of strategies,
and they adaptively selected based on their knowledge of the environment (Lieder
& Griffiths, 2017). In this work, we focus on identifying and understanding these
strategies. Understanding how people might switch between them is thus beyond
the scope of this study.

In Section 3.4, we introduced a line-search heuristic inspired by patterns of
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Figure 3.29: Transfer effects observed in Explore-Exploit participants, but not
captured by the general model. Here the model simulations are run forward using
the parameters fit to Explore-Exploit participants.

Figure 3.30: Example of a participant poorly predicted by model. The participant
used global search in the first two grids, with clicks distant from each other. In the
third grid however, they selected exclusively local actions, but started in a higher
reward region.
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behaviour observed in participants and used it as a special case model. We show
three grids from three different participants in Figure 3.31. Although we were able
to recover parameters that allowed us to broadly interpret this type of strategy, the
model simulations were not able to reproduce the distinct patterns of behaviour
seen in participants, characterised by local gradient-ascent steps in one dimension
at a time. One of the benefits of such a strategy could also be to alleviate memory
demands by only having to remember the direction, the previous tile reward
and the maximum known tile, rather than the complete sequence of previous
observations.

To recover this type of strategy, we implement a model that places a weight on
the next tile in line based on the direction from the two previous observations (λ1),
on the tiles orthogonal to the previous selection (λ2), and on the neighbours of the
maximum known value (λ3). These three terms define the exploration term. The
model trades off between exploration and exploitation (re-selecting the maximum
known value) explicitly through an ε parameter. The model predictions are then
wrapped in a softmax function with a temperature parameter τ . We use the AIC
to compare it to the general model and its ablated versions. We find that the
line-search model best explains the behavior of 16 percent of participants (11 of
71). When looking at out of sample predictions on the third grid, this model best
predicts the behavior of 25 percent of participants (18 of 71).

Figure 3.31: Examples of line search displayed by three different participants.

While the general model is unable to capture specific patterns of behaviour
such as the line-search heuristic discussed here, it has the advantage of being able
to relate different types of strategies in a continuous psychological space. In the
next section, we use the results from the general model to better understand the
behaviour of participants across the different experiments.
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Figure 3.32: Distribution over the number of contributing components in the
general model when fit to individual participants (N=206).

3.7 Model based analysis of experimental re-

sults

In this part, we conduct a preliminary analysis of the results offered by the
general model. In our analysis, we report model results on participants across
all experiments (N=217). We exclude 11 participants from our analysis, as they
were predicted at random, with all the components equal to zero.

When comparing the general model to ablated versions of the model, we
found that the different components all carried explanatory power at a group
level, but also at an individual level. Rather than being explained by a single
component, participants were best explained as a mixture of the different search
processes making up the model. The vast majority (.98) were best explained
by a combination of 3 or more components, and the mode was a combination
of four components (0.46) (see Figure 3.32). 0.96 of participants were best fit
with non-zero values for the directed search (α), implying that people do rely
on generalisation to guide their search. 0.91 with non-zero values for the novelty
component (ν), and 0.89 with non-zero values for the local search component
(λ). This suggests that participants had a strong inclination for novelty and local
search, corroborating our empirical findings from Chapter 2.

The directed search component (α) was particularly important across all par-
ticipants, with an average weight of 0.40 (SD=0.2), implying that generalisation
and expected rewards explained participant selections. Conversely, the β param-
eter was the least important, with only 0.25 of participants being best explained
with a non-zero value, meaning that uncertainty was not a big driver of explo-
ration for participants. For all parameter distributions, see Figure 3.33.

In the next section, to better understand how changes in the environment
affects participant strategies, we analyse the differences between conditions based
on the model descriptions of participants.
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Figure 3.33: Distributions of the different model component weights across all
participants (N=206).

Experiment Training
Visible
observations

N

E1 X X 71
E2V X X 68
E3T X X 37
E4TV X X 41

Table 3.1: The subscript ET indicates the presence of training in the experiment,
while the subscript EV indicates that rewards remain visible on a tile once it has been
selected.

3.7.1 The effect of data availability on participant strate-
gies when learning across new tasks

We first compare the model results of participants in Experiment 1 and Experi-
ment 2. In both experiments, participants were presented with three grids that
followed the location rule. In Experiment 1 (E1), the rewards of a tile were shown
for 1.5s after having been selected. In Experiment 2 (E2vis), the rewards were
continuously displayed once they had been selected. A brief recapitulation of the
experiments presented in Chapter 2 is given in Table 3.1.

Participants in Experiment 1 (E1) were modelled with the guided search
component (α, Med=0.48) playing a significantly more important role than in
Experiment 2 E2V (Med=0.33) (U(140) = 1736.0, p = 0.002). The local bias
parameter (λ) was more important in E1 (Med=0.13) than E2V (Med=0.08)
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(U(140) = 1916.0, p = 0.02). The novelty term (or undirected exploration, ν)
carried a much stronger explanatory weight in E2V participants (Med=0.21) than
in E1 participants (M=0.11) (U(140) = 1053.0, p < 0.001). These results support
the empirical analysis conducted in Chapter 2, namely that visible observations
incentivised participants to explore more, to explore more globally and, as a result,
were less concerned with maximising rewards.

3.7.2 The effect of data availability on participant strate-
gies when learning on known tasks

To further understand the effect of visible observations on participant strategies,
we look at Experiment 3 (E3T ) and Experiment 4 (E4TV ). In both experiments,
participants were trained on the location rule before being presented with the
three grids . In E3T , like in Experiment 1, rewards disappeared after 1.5s. In
E4TV rewards were constantly displayed after they had been observed (like in
Experiment 2).

E4T participants’ choices were driven by expected reward (α, Med=0.47),
more so than E3TV participants (Med=0.35) (U = 606, p = 0.06). Six
participants in E3TV had a non-zero uncertainty-directed weight (β, M=0.17,
SD=0.13), while no participants in E4T were explained by it. Like for Experiment
1 and 2, there was a significant difference in the importance of the novelty bonus
weights. It was significantly more important in E3TV participants (Med=0.24)
than in E4T participants (Med=0.1) (U = 288.0, p < 0.001).

In E1 we saw that when the task structure was unknown and observations
disappeared, participants had a significantly stronger tendency to explore locally
than in E2V where observations remained visible. This effect was not observed
when the task structure was known: both E3TV and E4T participants had a
median value of 0.1 (U = 694.0, p = 0.26).

Overall, we found that both the availability of observations and training on
the reward structure prior to the task both has important effect on participant
strategies at a group level. We found that data availability led to more novelty
driven exploration in participants, as opposed to more directed search when
rewards disappeared. When participants were discovering the task structure, their
exploration was more local when rewards disappeared than when they remained
available. This was not the case when participants had been trained on the reward
structure prior to the task.

3.8 Conclusion

In this chapter, we presented a general model to explain the strategies of
participants that combines model-based processes as well as simpler heuristic
strategies. The two model-based processes we considered in our model are expected
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rewards and uncertainty, which are both computed using a Gaussian Process
model, a popular model of human generalisation. To account for some of the
behaviours observed in participants in Chapter 2, we also considered simpler
strategies that do not require a model of the world: Greedy re-selection of the best
known action, random exploration and local search. Based on model simulations,
we checked that the model was flexible enough to capture and distinguish a
variety of behaviours, and the parameters used to describe participants were
interpretable. We also compared it to ablated versions and found it yielded better
predictions than simpler models.

In general, we found that our general model was able to capture robust
qualitative and quantitative patterns in how participants selected actions, and
that most participants were best explained as a combination of these different
processes as opposed to a subset of them. Our model offered strong evidence
for people’s ability to use generalisation to predict the value of unknown actions
to guide their search. Local search, novelty and greedy re-selection of the max
known were also strong predictors for people’s behaviour. Surprisingly, there was
little evidence in support of uncertainty driven search being an important driver
for the actions of most participants.

We also found that there were consistent patterns in how participants selected
actions, affected by the availability of information when they explored, and their
knowledge of the reward structure. The general model allowed us to explain the
influence of the different experimental controls on the search strategies used by
participants. Finally, we looked at some of the qualitative patterns that the model
was not able to capture, and discussed how the model could be further improved.
In this chapter, we limited our analysis to group level differences. In Chapter
2, we highlighted that beyond the group level differences, important differences
at the individual level also existed. In the next chapter, we develop a model of
individual differences using the results of the general model to better understand
the similarities and differences across participant strategies.



Chapter 4

Understanding similarity and
differences in human strategies

4.1 Introduction

So far, we have discussed the results of four experiments through an empirical
analysis of participant behaviour. Across all four experiments, participants were
presented with a task of similar structure, yet we observed clear differences in
their strategies. In the last chapter, we introduced a general computational
framework to study the behaviours of participants. When motivating our general
model, we discussed the benefits of using model expansion to capture competing
hypotheses as special cases of a general model. One of the benefits we highlighted
was the ability to capture a diverse set of behaviour within a continuous parameter
space. In this chapter we focus specifically on the problem of understanding the
differences between participants by leveraging this shared psychological space.

The diversity of strategies used by people in explore-exploit tasks, and the
study of individual differences, has been a subject of interest for a number of stud-
ies. Steyvers et al. (2009), for example, studied the decisions of 451 participants on
bandit problems and found clear evidence for individual differences, and reported
correlations between participant decisions and a set of psychological variables. In
their study, individual differences are explained through different heuristics best
describing individuals. Yi et al. (2009) looked at individual differences in a rest-
less bandit task, and reported substantial variation in the overall performance and
the degree to which participants switched between options. Here, the difference
in participant behaviour was explained as the result of different parametrisations
of a particle filter algorithm. Similarly, Reverdy et al. (2014) classified 326 par-
ticipants according to three distinct models of regret on a spatially correlated
multi-armed bandit task. In a more applied domain, understanding the variation
in novelty seeking behaviours is of central interest to clinical research. Indeed,
a growing number of studies have started to look at how systematic differences
in novelty seeking strategies across individuals to make sense of behaviours that
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relate to addiction, impulsive behaviour or risk-taking (Djamshidian et al., 2011;
Addicott et al., 2013, 2017; Harlé et al., 2015, 2017; Clark et al., 2013).

In Chapter 3, we presented a general model to capture human exploratory
strategies. We showed that different sets of decision strategies could be captured
and represented by a unique parametrisation under this general model. The
approach of modelling individuals independetly has the benefit of not losing
information or corrupting the data by aggregating or averaging it. However,
it also carries downsides. Human decisions are inherently noisy and difficult to
model. Conducting group level analyses can remove some of this noise and help
overcome the sparsity of the data of a single individual. Only focusing on an
analysis at the individual level carries the risk of overfitting by modelling the
noisy elements of participant decisions, making it more difficult to extract the
more general patterns of behaviour in the data and generalise to other contexts.

In this chapter, we attempt to overcome these issues by uncovering “families”
of strategies shared amongst participants. To do this, we model participants under
the assumption that each belongs to one of potentially many groups of possible
strategies. Within a given group, participants will behave in a similar way, but
there can be a number of different groups and participants will behave differently
from one group to the next. In other words, even if each participant is unique,
the variations between participants are not random. In this modelling framework,
the groups observed in the our data set are not understood as a fixed set of
strategy types that fully explains the variation between participants. Instead, as
components that are a part of an arbitrarily rich structure. Given more data,
richer and finer grained details about individual differences can be uncovered as
the number of inferred groups grows (Navarro et al., 2006). This intuition can
be modelled in a hierarchical Bayesian framework, where the differences between
participants are described with a distribution over participant parameters. We
thus have a model at the level of the individual, that describes the selections
of participants with parameters θ, where θi is the parameter corresponding to
participant i, and a model at the group level that describes the differences between
participants with parameters φ, where φj corresponds to the parametrisation of
one of the groups j.

4.2 Evaluating the diversity of participant

strategies

To gain a first intuition of the diversity of participant strategies as captured
by the general model we transpose the 6D parameter space into 2D using the
T-distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Maaten &
Hinton, 2008). This is shown in Figure 4.1. t-SNE constructs embeddings by
minimising the Kullback-Leibler divergence between the joint probabilities of the
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E1
E2V

E3TV

E4T

Figure 4.1: Map over different the strategies used by participants, as captured
by the general model. Visualisation shows t-SNE embedding of parameters fit to
participants, and their respective experimental condition. In E1 and E2, participants
presented with unknown structures, while E3 and E4 had prior training on the nature
of the task structures.

low-dimensional (2D) embedding and the high-dimensional data (6D). One of the
advantages of t-SNE is its ability to capture the local structure of the data (close
points are embedded close to each other) while also revealing some important
global structure (such as clusters). We were interested in seeing if clear structures
would emerge from the embedding, thus corroborating the approach of modelling
individual differences as stemming from groups of strategies, using a hierarchical
modelling approach. We were also curious to observe whether participants from
the same experimental conditions would be clustered together. While the 2D
representation should not be used to make strong conclusions, it can give a first
intuition about the existence of patterns in the data.

On inspection, some clusters seem to exist in the data, but the embedding
does not suggest that these clusters are directly determined by the experimental
conditions of participants. This may suggest that the types of strategies used by
participants go beyond the features of the tasks they were presented with (i.e.
training vs no training, visible vs disappearing rewards). This could potentially
point at different processes at play underlying the mechanisms behind human
exploration. Clusters at the top-left and on the right hand side of the map (mostly
E2V and E1 participants) do however suggest that similarities in experimental
context (no training, or visible observations) might bear some influence on the



72 4.3 Identifying clusters of strategies

strategies participants used. It seems that patterns in variation of participant
strategies exist both at the individual and at the group level, which further
supports the idea that studying individual differences can be informative to better
understand both the changing and the invariant aspects of people’s decisions
strategies. In the next part, we attempt to capture these patterns of variations
by constructing a model of individual differences.

4.3 Identifying clusters of strategies

To identify the different groups of participant strategies, we use a Gaussian
Mixture Model (GMM) on the 6D parameter space from the general model
fits obtained through MLE. The GMM is an unsupervised clustering algorithm
that assumes the data to be generated by K clusters, each associated with a
parameter θk. Each cluster corresponds to a group of strategy. We estimate the
number of clusters using leave-one-out cross validation. Participants were split
into 10 groups (folds) at random and we fit the GMM model on all participant
folds except for one. The mean negative log likelihood was estimated for a
range of groups K=1,. . . , 10 in each cross-validation fold. 11 participants were
predicted at random by the model (i.e. all weight parameters were zero) indicating
random/unpredictable behaviour. We excluded them from the participant data
set assuming that they corresponded to a separate cluster. On average, the cross-
validation of the GMM indicated that a separation into four subgroups provided
the most generalisable model, meaning that it yielded the lowest negative log-
likelihood score on the test set (see Figure 4.2). We also evaluated the predictive
power of different clusters by using the BIC (Schwarz et al., 1978) and silhouette
score (Rousseeuw, 1987), which measures group cohesion and distance to other
clusters. Increasing the number of clusters above 4 did not yield significant
improvements to the BIC. The silhouette score, also strongly favoured 4 clusters.

When looking at the cluster assignment probabilities, 95% of participants were
assigned to a cluster with a probability larger than 0.7. The cohesion of clusters
supports the hypothesis that distinct families of strategies amongst participants
exist.

Based on the parameters of the cluster centres, we give the different groups
the following names: Greedy local (n=47), Scholars (n=35), Local explorers
(n=48) and Maximisers (n=76). We explain our nomenclature and the different
group characteristics below. The parameters of each cluster centre are shown
in Figure 4.3. The largest group, the Maximisers, described participants best
clustered under a dominant GP expectation term (α=0.56). The expected rewards
under the Gaussian Process model denote an ability to generalise based on
similarity to previous observations. This behaviour was the most frequent across
all conditions all except for in E2V . We show two participants from the Maximiser
cluster in 4.4. In the two examples, we find that participants explore mainly
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(a) Average rank of GMM with different
number of clusters when comparing scores
on test set using 10-fold cross validation.
The results shown are from 20 evaluations.
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(b) Cluster assignment probabilities across
participants for K=4 clusters. 95% of partici-
pants were assigned to a cluster with a prob-
ability larger than 0.7

Figure 4.2: GMM cross-validation results and cluster assignment probabilities with
K=4 clusters.

through small steps, incrementally ascending towards the maximum and then
efficiently re-selecting it without any further exploration.

Participants in the Scholar cluster have a cluster centre with two important
GP components: Expected rewards and uncertainty driven search. It is the
only cluster centre with a non-zero β term (β=0.30). We show two example
participants from the Scholar cluster in Figure 4.5. Here, the two participants
engage in initial exploratory actions that are very far from one another and
eventually settle on the maximum tile or one of its neighbours. For both Scholars
and Maximisers the most important components are the GP-driven components,
indicating model based strategies and supporting people’s use of generalisation
to guide their search. The Local explorer participants are clustered around a
centre with novelty as its most important component, combined with expected
rewards and a strong local bias term. It is the only cluster centre with no
weight on the greedy component. Combined with an important novelty term, it
suggests a Full explore strategy discussed in Chapter 2. We show two participants,
from Experiment 2 and 3, belonging to this cluster in Figure 4.6. Here, the
participants engage exclusively in exploration never reselecting the same tile.
They mainly explore locally, selecting direct neighbours of their previous selection,
with some occasional longer jumps. We name the last group Greedy local, since
its centre’s most important parameter is the greedy component while also having
an important local bias term. The Greedy local cluster centre shares the same
“active” model components as the Maximiser, with a more important greedy term
and less emphasis on the expected rewards. We show two participants from the
Greedy local cluster in Figure 4.7. The two participants engage in a mix of global
and local exploratory actions and stop early, re-selecting a sub-optimal tile.

Across these participant examples, we note first strong qualitative differences
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Figure 4.3: Cluster centre parameters obtained from the GMM clustering algorithm.

between the different strategy types presented. Conversely, we also find obvious
similarities between participants belonging to the same clusters, even when they
came from different experimental conditions, thus justifying collapsing the data
across our four experiments to study participant strategies.

We show the t-SNE embedding and mark participants to their respective
clusters in Figure 4.8. We find that the clusters obtained by the GMM correspond
neatly with the structure of the t-SNE embedding. To better understand the
patterns of behaviour of participants, we use the clusters as tool of analysis in the
next section.

4.4 Experimental analysis using strategy types

4.4.1 Choice of strategy given environmental features

Figure 4.13 shows the ratio of the different subgroups across all four experiments.
E1 had a fairly uniform distribution of subgroups, with 0.24 of greedy local
participants, 0.27 as Scholars, 0.19 as Local explorers and 0.30 as Maximizers. In
E2V , there were significantly more Local explorers than in E1 (p = 0.05). There
were significantly fewer Scholars in E3TV when compared to E1 (p = 0.05). In
E4T there were no Scholars and a single local explorer. In general, the visible
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(a) Maximiser participant in Experiment 1

(b) Maximiser participant in Experiment 2

Figure 4.4: Two participants under the Maximiser cluster showing qualitative
similarities in strategy despite the differences in experimental condition.
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(a) Scholar participant in Experiment 1

(b) Scholar participant in Experiment 2

Figure 4.5: Two participants under the Scholar cluster showing qualitative similar-
ities in strategy despite the differences in experimental condition.
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(a) Local explorer participant in Experiment 2

(b) Local explorer participant in Experiment 3

Figure 4.6: Two participants under the Local explorer cluster showing qualitative
similarities in strategy despite the differences in experimental condition.



78 4.4 Experimental analysis using strategy types

(a) Greedy local participant in Experiment 2

(b) Greedy local participant in Experiment 4

Figure 4.7: Two participants under the Greedy cluster cluster showing qualitative
similarities in strategy despite the differences in experimental condition.
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Greedy locals
Scholars

Local
explorers
Maximizers

Figure 4.8: Map over different the strategies used by participants, as captured
by the general model. Visualisation shows t-SNE embedding of parameters fit to
participants, along with GMM clustering (on the 6D data).

observations feature had a strong effect on the ratio of Local explorers, whereas
training had an effect on the number of Scholars.

Across all experiments, the ratio of participants participants predominantly
described by model-based components (i.e. Scholars and Maximisers) and of
participants mainly described by heuristic strategies (Greedy locals and Local
explorers) was fairly constant (in same order, M=0.57, 0.5, 0.54, 0.56). One
possible explanation is that experimental manipulations (i.e. training and
information availability) did not influence participants’ inclination to engage in
model-based exploration, but influenced more specifically the type of strategy
when engaging in either model-based or model-free behaviour. The determinant
of whether participants engaged in model based strategies could have been down
to the individual participant, e.g. their assumptions about the complexity of
the task, or how much cognitive effort they put in. This hypothesis could be
tested e.g. by looking at how cognitive load of time pressure affects participant
strategies, under the assumption that heuristics strategies are cheaper than model
based ones, and would thus be preferred.

Next, we look at the performance of the different sub-groups across the four
experiments. In general, we hypothesised that the performance of participants
would be distinct across the four subgroups of participant strategies, and that
there would be patterns corresponding to their model descriptions. One predic-
tion was that Scholars and Maximisers would display transfer effects in Experi-
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Figure 4.9: Ratio of subgroups across experiments

ment 1 and 2, and that they would outperform Greedy locals and Local explorers
across all four experiments, under the assumption that leveraging a model of the
environment would yield substantial performance benefits.

4.4.2 Experiment 1

We first compared the performance of the different groups by 1-way ANOVA test
on the average performance of participants across all three grids. This showed
that there were significant differences in the average performance of the different
groups. A Tukey HSD post-hoc comparison showed that Maximisers significantly
outperformed all the other groups. Scholars and Greedy locals both outperformed
Local explorers, but the difference between the two groups was not significant
(∆M = 0.04). We then looked at patterns in how participants progressed within
grids and across all three grids. Participants in the Maximiser (n=20) and Scholar
(n=18) groups demonstrated progress across trials (Maximisers: b = 0.04, se =
0.001, p < 0.001; Scholars: b = 0.03, se = 0.001, p < 0.001) and across grids
(Maximisers: b = 0.09, se = 0.008, p < 0.001; Scholars:b = 0.08, se = 0.009, p <
0.001 ), showing that they were able to learn the underlying task structure and
exploit it efficiently (see Figure 4.10). Greedy local participants (n=16) did not
show any progress across grids (b = −0.01, se = 0.01, p = 0.47), but were able to
increase their score with the number of trials (b = 0.02, se = 0.001, p < 0.001).
Conversely, participants within the Local explorer cluster (n=13) had very little
progress across trials (b = 0.01, se = 0.001, p < 0.001), but some slight progress
across grids (b = 0.04, se = 0.01, p < 0.001).

Next, we looked at the distance between exploratory selections of participants.
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Figure 4.10: Performance of subgroups in Experiment 1 (E1, N=67). Greedy locals:
n=16 participants, Scholars: n=18, Local explorers: n=13, Maximisers: n=20.
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A 1-way ANOVA test showed that the means were significantly different across
the different groups (F = 14.02, p < 0.001). A Tukey HSD post-hoc compari-
son showed that Scholar participants had significantly longer average distances
between clicks (M=3.06, Local explorers: M=2.1; Maximisers: M=1.9; Greedy
locals: M=2.4) than in the other three groups, supporting the theory that these
participants engaged global exploration to reduce structural uncertainty. The
were no significant differences amongst the other three groups.

We conducted the same analysis when looking at the ratio of exploration
participants engaged in (where exploration is defined as selecting an unseen tile).
Again, the means were significantly different (F = 15.91, p < 0.001). A Tukey
HSD post-hoc comparison showed that Local explorers had a significantly higher
exploration ratio (M=0.96) than the other three groups of participants (Scholars:
M=0.63; Maximisers: M=0.56; Greedy locals: M=0.67). The differences between
the other groups were not significant.

4.4.3 Experiment 2

In Experiment 2, the average performances were also significantly different
across the different groups (F = 36.47, p < 0.001). A Tukey HSD post-
hoc comparison showed significant differences between all groups, except for
between Greedy locals (n=10) and Local explorers (n=23). Maximisers (n=20;
M=0.62) were the best performing participants, followed by Scholars (n=13;
M=0.52), Greedy locals (M=0.38) and Local explorers (M=0.34). Participants
under the Scholar cluster followed a similar pattern as in Experiment 1. They
demonstrated progress across trials (b = 0.03, se = 0.002, p < 0.001) and across
grids (b = 0.06, se = 0.11, p < 0.001). Maximisers showed the same progress
across trials (b=0.03, se=0.001, p¡0.001), but only slight progress across grids
(b = 0.03, se = 0.009, p < 0.001). Local explorers selected only slightly more
rewarding tiles across trials (b = 0.01, se = 0.001, p < 0.001), and no transfer
across grids (b = 0.006, se = 0.007, p = .79). Greedy locals showed weak progress
across trials (b = 0.01, se = 0.002, p < 0.001) and weak transfer across grids
(b = 0.03, se = 0.01, p = 0.03).

When looking at distance across selections, only Scholars had significantly
longer distances between clicks than all other three groups (F = 15.13, p < 0.001).
The amount of exploration in each group marked stronger differences across the
different groups (F = 42.41, p < 0.001). Like in Experiment 1, Local explorers
explored significantly more than all other three groups (M=0.99). Greedy locals
(M=0.74) also had a ratio of exploration significantly higher than Maximisers and
Scholars. There was no significant difference between Maximisers (M=0.54) and
Scholars (M=0.54).
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Figure 4.11: Performance of subgroups in Experiment 2 (E2V , N=66). Greedy
locals: n=10 participants, Scholars: n=13, Local explorers: n=23, Maximisers: n=20
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4.4.4 Experiment 3

Performances in Experiment 3 showed significant differences amongst participants
clusters (F=15.05, p < 0.001). Again, Maximisers were the best performing
participants (n=17; M=0.69), followed by Scholars (n=4; M=0.57), Greedy
locals (n=7; M=0.47) and Local explorers (n=11; M=0.36). A Tukey HSD
post-hoc comparison showed the differences were significant between Maximisers
and Greedy locals and Local explorers. Scholars also significantly outperformed
Local explorers. The average performance was directly related to the groups
learning rates across trials: Maximisers had the fastest progress across trials
(b = 0.04, se = 0.001, p < 0.001), followed by Scholars (b = 0.02, se = 0.003, p <
0.001), Greedy locals (b = 0.01, se = 0.002, p < 0.001) and Local explorers
(b = 0.003, se = 0.001, p < 0.041). Because of the training prior to the tasks,
there was no evidence for transfer across grids in the different groups. Like in
Experiment 1 and 2, Scholars had significantly longer distance between their
selections than in all other groups (F = 7.80, p < 0.001). There was no
significant differences between the other cluster of participants. Similarly, just
like in Experiment 1 and 2, Local explorers had significantly more exploratory
selections (M=1.0) than Scholars (M=0.64), Maximisers (M=0.6) or Greedy locals
(M=0.61).

4.4.5 Experiment 4

In Experiment 4, there was only one participant clustered under the Local explorer
group, and none in the group of Scholars. We thus limit our analysis to Greedy
locals and Maximisers. The average performance of Maximisers (n=19) was
significantly better than Greedy locals (n=14) (t=6.92, p < 0.001). Greedy locals
progressed slightly across trials (b = 0.002, se = 0.002, p < 0.001), but not across
grids (b = 0.001, se = 0.01, p = 0.61). Conversely, Maximisers showed significant
progress across trials (b = 0.04, se = 0.001, p < 0.001). Despite training, they also
showed slight improvement across grids (b = 0.03, se = 0.007, p < 0.001). There
was no significant difference in the distance between selections of Maximisers
(M=1.90) and Greedy locals (M=2.0) (t = −0.36, p = 0.73), nor between their
exploration ration (M = 0.52, 0.52; t = −0.07, p = 0.95).

4.5 Conclusion

In this chapter, used a Gaussian mixture model as model of individual differences
to better understand the patterns in how participants vary in terms of their
exploratory strategies. Four families of strategies emerged from the data across
all four experiments. We analysed the behaviour of participants across the four
experiments presented in Chapter 2 according to these four clusters of participants
and found consistent behavioural characteristics. This showed that there existed
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Figure 4.12: Performance of subgroups in Experiment 3 (E3TV , N=39). Greedy
locals: n=7 participants, Scholars: n=4, Local explorers: n=11, Maximisers: n=17

Figure 4.13: Performance of subgroups in Experiment 4 (E4T ). Greedy locals:
n=14 participants, Maximisers: n=19.
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systematic similarities and differences between participants across the different
experiments. In general, we find that the behavioural qualities of each sub-group
were coherent with their parameter descriptions. We named the largest cluster
of participants Maximisers. Maximisers had the best overall performance, and
progressed across grids. They were predominantly explained by selecting utility
driven actions, relying on generalisation to predict the rewards of unseen actions.
This was characterised by small exploratory steps in the direction of the maximum
and a re-selection of the maximum once found. The second best performing group
was the Scholar sub-group. It was the only cluster with a significant weight on
uncertainty directed search, which was characterised by larger average distances
between initial selections of participants. Like the Maximiser group, they also
displayed progress across grids. The remaining two groups were predominantly
explained by the heuristic components of the model. In general, Greedy local
participants improved their scores across turns, but there was no evidence for
transfer across grids. The most important term defining this group of participants
was the greedy-re-selection component, which was characterised by participants
settling on sub-optimal actions. Finally, the last cluster of participant strategies
we identified was the one of Local explorer participants. Local explorers explored
almost exclusively, and did so by favouring local and novel actions. Though
they often found the maximum, they did not show strong progress across trials,
nor did they progress across grids. Overall, these results paint a picture of
human exploration as diverse, yet with systematic mechanisms underlying it. The
majority of participants were in parts explained by the expected utility of actions,
showing that people rely on generalisation to predict the outcome of unknown
actions. Only a select number of participants were explained by uncertainty
driven search. Many participants seemed to rely on local search to guide their
exploration, though his may be have been adaptive to the nature of our task (i.e.
spatially-correlated, and uni-modal with a steep gradient). In the next chapter,
we look at experiments conducted by Wu et al. (2018) to understand if our findings
are coherent with their data. Their experiments carried many similarities with
the experiments we presented in Chapter 2, but with different reward structures.



Chapter 5

Studying generalisation in rough
and smooth environments

5.1 Introduction

We have reported, through our general model of human exploration, consistent
patterns in the different strategies used by participants across four different
experiments. One of the limitations from our study is that in all four experiments,
participants were presented with a single type of reward structure. The grids
had one maximum, and the rewards of tiles would decay exponentially with the
Euclidian distance to the maximum tile. In this chapter, we look at participant
data collected by Wu et al. (2018)1. Their experiments carried many similarities
with the experiments we presented in Chapter 2, but used different reward
structures. Here, we focus specifically on the influence of environment structure
on the strategies used by participants. Our goal in this chapter is two-fold. First,
we look at individual differences, and the patterns of variation in strategies used
across participants. Can the patterns highlighted in our analysis in Chapter
4 be observed in how people search in more complex (multi-modal, and less
spatially correlated) sets of reward structures? Part of this investigation lies in
understanding to what extent people’s strategies are adaptive to the underlying
structure of their environment. Second, we examine the different claims made by
Wu et al. (2018) and relate them to our findings from the previous chapters. We
start by reviewing briefly the experiments presented in their study and how they
differ from the experiments we presented in Chapter 2.

5.1.1 Summary of experiments

In the study conducted by Wu et al. (2018), participants were presented with eight
grids of 11x11 tiles. Wu et al. contrasted two conditions, one where participants

1Participant data, code and model simulation data from their study are available at
https://github.com/charleywu/gridsearch.
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(a) Smooth reward structure (b) Rough reward structure

Figure 5.1: Examples of grids with smooth and rough reward structures presented
to participants.

had to search for the maximum and one where they had to maximise their
cumulative score. Here, we look at the experimental conditions where participants
had to maximise their cumulative reward across all grids, a goal which was
identical to our tasks’. We also restrict our analysis to their second experiment
(Experiment 2), where the generating parameters of the reward structures are
known. Wu et al. (2018) manipulated the types of reward structures with smooth
versus rough distributions of rewards, corresponding to the correlations between
the location of a tile and its associated reward (see Figure 5.2). The reward values
were sampled from RBF kernels with different length-scales (λ=1 for rough and
λ=2 for smooth). In their formulation, they set the lengthscale as λ = 1

2
l2, the

denominator of the RBF kernel function for a more psychologically interpretable
formulation. The prior mean was fixed to the median value of payoffs, m(x) = 50.

In the smooth condition, high rewards were strongly spatially correlated,
indicating that tiles close to each other had a high degree of similarity in their
associated rewards, while a rough environment presented participants with more
unpredictable outcomes (i.e. a lower degree of correlation between neighbouring
tiles). Across eight grids, each participant was presented with alternating search
horizons (20 trials vs 40 trials) in both experimental conditions with the order
counterbalanced between subjects. For simplicity, we focus here on the long
horizons, i.e. four of the grids presented to participants. One reason for this is to
look at whether people’s tendency to over-explore, as observed in our experiments,
was not set up by the relatively short search horizons in our experiments (20
selections). While we do not report on the analysis for shorter horizons here, we
found our broad conclusions to apply across the two different types of tasks.

Beyond the reward structures, there were two main differences from our
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experimental design. First, participants were given a cue about the maximum, as
the rewards were colour hued, with the maximal value being dark red. Knowing
the the maximum of the function offers a considerable advantage to the search
– this can be seen through the efficiency of Bayesian Optimisation methods that
seek to directly minimise the entropy of the maximum y-value (e.g., see Wang
& Jegelka, 2017). Additional information about the maximum value may have
motivated more exploitative selection strategies in participants. Second, there was
some added uncertainty with the rewards of individual tiles, as a small noise value
was added upon selection (ε ∼ N(0, 1), with 100 being the maximum value). The
rewards were scaled in each grid so the displayed reward values would be different.
The history of previously observed rewards remained accessible throughout every
given grid.

Across both experimental conditions, participants were initially shown three
examples of grids with the same correlation between rewards as in the real task
(i.e. sampled from the same RBF kernel). Participants were also given written
instructions, comprehension check questions, and feedback between rounds to
ensure they were familiar with the underlying reward structures (see Wu et al.’s
Methods section for details).

5.1.2 Results from Wu et al. (2018)

In their study, the authors draw some conclusions about human behaviour that
we either did not investigate directly, or are at odds with the ones we reported in
the previous chapters. We review them briefly here:

1) People have a systematic tendency to under-generalize the extent of spatial
correlations. Wu et al. (2018)

When predicting the expected reward of unseen actions, participants need
to evaluate the similarity between a new action and previous observations. The
general assumption is that actions close to each other will be similar, while distant
ones will be more unpredictable. In the context of the grid tasks, the degree to
which participants generalise will inform how similar one expects neighbouring
tiles to be from an observation when they are e.g. two, three or four tiles away.
In a GP model, the length-scale parameter can be interpreted as determining
a “generalisation gradient” (cf. Shepard, 1987), as it models generalisation as a
(squared) exponential decay distance between stimuli. The larger the length-
scale, the smoother the reward function – thus predicting nearby actions to be
more similar.

In their study, Wu et al. (2018) put forward the idea that people tend to assume
a lesser degree of similarity between actions than the true degree of similarity of
the environment. Assuming a lower degree of similarity predicts that people are
more uncertain about unobserved actions than an ideal observer. To give an
intuition for this, we show an example using a Gaussian Process model for two
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different length-scale values (λ = 2 and λ = 0.8). We look at the different model
predictions after three observations from a function sampled from a GP kernel
with length-scale 2.

(a) GP predictions for λ = 2. (b) GP predictions for λ = 0.8

Figure 5.2: GP predictions for different length-scales (λ). The yellow line shows the
UCB predictions based on the GP predictions for β=1. The UCB acquisition function
favours neighbours to previous observations when the length-scale is smaller.

We can see from the figures that a smaller length-scale leads to greater overall
uncertainty about the underlying function. This influences a UCB acquisition
function towards favouring both new actions, and actions that are close to known
and highly rewarding actions. These predictions seem to broadly align with the
local search behaviour observed in our experiments.

Our modelling approach did not attempt to fit the length-scale to participants.
Instead, we presented a GP learning model which estimated the posterior
over kernel parameters after each new observation. The uncertainty about
kernel hyperparameters was then integrated out when computing the acquisition
function. In our initial two experiments participants were not familiar with the
underlying structure and had to learn it through their observations. In this
context, the idea of a learning model implies that the hidden reward structure is
unknown, and is thus at odds with a fixed length-scale across all trials. A fixed
length-scale does however make a lot of sense in the context of known structures.
By assuming that the true parameter has already been learned during training,
it can be interpreted as a prior over the expected reward correlation. This is the
interpretation we opt for in this chapter. We investigate in this chapter whether
the local bias of participants can be explained by a greater uncertainty assumed
by participants.

2) There is substantial evidence for the separate phenomena of directed explo-
ration (towards reducing uncertainty) and noisy, undirected exploration.
Wu et al. (2018)

3) Human search behaviour is best explained by Gaussian Process function
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learning combined with an optimistic upper confidence bound sampling
strategy. Wu et al. (2018)

The picture painted through claim 2) is that people explore through a com-
bination of uncertainty reducing actions and random actions. 3) emphasises the
important role of uncertainty in the decisions of participants. When taken at face
value, this is largely at odds with what we found in our experimental data. Across
our experiments, only a small proportion of participants relied on structural un-
certainty to guide their search (the group we named scholars). Furthermore, there
was no strong evidence for random search, but rather local search with a strong
bias towards novel actions. As explained above, assuming a tendency to under-
generalise, the theory put forward by Wu et al. (2018) may partly explain what we
observed in our data, specifically local search strategies and a strong exploratory
drive. In this chapter, we attempt to clarify their psychological claims by looking
at the predictions made by their model. We first highlight some points that lack
clarity in the results reported by Wu et al. (2018).

In their study, Wu et al. (2018) contrast different versions of the same models,
a standard model and a “localised” version. The localised version of a model
consists in multiplying the predictions of a model by their Inverse Manhattan
Distance (IMD) to the previous selection. While they report that Gaussian
Process regression combined with UCB sampling provides the best account for
how people explore, 61 participants out of 82 were best predicted by the localised
version of their model. The claim that participants rely on generalisation to
guide their search is based upon a comparison between a function learning model
(that uses a GP for generalisation) and an option learning model, which simply
learns the value of previously observed tiles without extrapolating to unseen ones.
However, the localised version of the option learning model strongly outperforms
the non-localised GP-UCB model (t(79) = 10.47, p < .001). This indicates that
the individual contributions of the localisation component and of the model based
components (i.e. the expected reward and the uncertainty under the GP) need
to be investigated in more detail. In this chapter, we reanalyse the predictions
of the different Gaussian Process models, and compare it to our general model
to better understand the extent to which the local bias influences the inferred
parameter of the model when fit to participants. Finally, when comparing the
length-scales Wu et al. (2018) obtained by cross-validation for participants on
long horizons, we find no significant difference between the rough and smooth
conditions (∆M=0.08, t(79) = 0.95, p = 0.35). This would indicate participants
assumed the same degree of similarity in the two different conditions and did
not adapt their representations according to the structure of the environment. A
possible interpretation is that participants generalise in a very localised way, as
opposed to using the global structure of their environment to guide their search
efficiently. To further investigate people’s ability to learn and exploit the task
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structure they are faced with, we look at the inferred generalisation parameters
through the lens of our general model.

Before looking at the predictions of different models, we first present a re-
analysis of their experimental data and look at patterns of individual differences.

5.2 Individual differences: an empirical analysis

One of the salient observations from our experimental analysis in Chapter 2, was
the significant number of participants who exclusively explored despite the clear
incentives to repeatedly select the most rewarding tiles. This pattern of behaviour
was not reported in Wu et al. (2018), but some of the learning curves of individual
participants (shown in their supplementary materials) hinted that this may be
the case. We look at whether the pattern of purely exploratory behavior that
we found is also present in Wu et al.’s data. To assess the exploratory drive
of participants, we analyse the ratio of unique selections, and how it relates to
participant performance. We separate participants into Full-explore and Explore-
exploit groups according to their ratio of exploration like we did in Chapter 2,
where exploration is defined as the selection of a previously unobserved action.
We define a Full-explore strategy as selecting unique tiles more than 0.90 of
the time (at least 37 out of 40 selections) on the majority of grids (at least
3 out of 4). We chose these values to be both conservative about what was
considered fully exploratory behaviour and similar to what we used in our own
experiments. Figure 5.3 shows participants’ average performance in relation to
their explore-exploit ratio. In the Smooth condition, 0.55 of participants had
a Full-explore strategy (12 out of 22). In the rough condition, it was 0.74 of
participants (14 out of 19). This was not a significant difference under Fisher’s
exact test (p = 0.33). In Figure 5.4, we plot the learning curves of participants
according to this grouping of participants. As reported by Wu et al. (2018),
participants in the smooth condition performed significantly better than in the
rough condition (t(42) = −4.26, p < 0.001). This supports the assertion that
participants were able to exploit the underlying reward structure, since the smooth
condition was more regular. However, it does not necessarily imply participants
learned the structure, since a simple gradient-ascending line-search would do
better in a smoother space. From our analysis, it is also clear that there were
important differences in participant strategies. More specifically, we observed
a similar clear partition in the amount of exploration conducted by individual
participants than the one we described in Chapter 2. A large proportion of
participants explored exclusively, visibly dismissing rewards, while the others
traded off between exploration and exploitation so as to maximise rewards.

In accordance with the local bias in participant selections observed in our
experiments, Wu et al. (2018) reported that participants sampled more locally
than a random baseline in both conditions. The average distance between ex-
ploratory selections (using the Inverse Manhattan Distance, IMD) was smaller in
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(a) Smooth reward structure (b) Rough reward structure

Figure 5.3: Average reward performance with respect to the explore-exploit ratio of
participants in the Rough and Smooth conditions. A value of 1 indicates exclusively
selecting new tiles. Each dot represent a single participant.

(a) Smooth reward structure (b) Rough reward structure

Figure 5.4: Participant performances according to Full-Explore and Explore-Exploit
strategy types in the Smooth and Rough experimental conditions.
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the smooth condition (M=2.08, SD=0.40) than in the rough condition (M=2.39,
SD=0.70), though not significantly different (t(42)=1.68, p=0.10). One could
have expected participants in the smooth condition to have more global selec-
tions since the structure was simpler to exploit, but it could be that participants
opted instead for small steps, ascending the gradient, much like what we observed
in our experiments. Participants could have taken more random exploratory steps
in the rough condition since the structure carried more inherent uncertainty.

In summary, we analysed the participant presented in Wu et al. (2018)
to better understand the influence of the environment structure on participant
strategies. Participants were able to perform better under the smooth condition,
showing that they were able to use the reward structure to maximise their
rewards. Although this was not a point of focus in the study conducted by Wu
et al., we found important individual differences amongst participant strategies.
Specifically, some of the patterns reported in Chapter 2 were also salient in the
behaviour of participants. Indeed, a large proportion of participants engaged in
full exploratory strategies in both the rough and smooth conditions, failing to re-
select known rewarding tiles. Furthermore, participants also displayed a strong
local bias in their exploratory selections. In general, these observations seem in
conflict with some of the descriptions made by Wu et al., when e.g. noting a
“remarkable concurrence between intuitive human strategies and state-of-the-art
machine learning research”, or the importance of uncertainty estimates to guide
exploration. To better understand the different strategies used by participants,
we use the general model introduced in Chapter 3 in the next section.

5.3 Model based analysis of participant strate-

gies

We report here on the group level parameter distributions obtained from the
general model. In our initial model based analysis, we fix the length-scale to
the true generating parameter of the reward structure instead of estimating the
posterior over GP parameters. This is done to evaluate how participants might
rely on the true structural uncertainty, given correct assumptions. We use a fixed
parameter value under the assumption that participants did not have to learn the
correlation of rewards, since they had seen examples of the reward structure, and
were explicitly told about it. We scale the predictive scores of each component
by their range across all grids and trials to get a better understanding of their
respective contribution when explaining participant behaviour (for details on the
model, and model fitting, see Section 3.3.
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Figure 5.5: Histograms over parameter values for participants in the smooth
condition.

5.3.1 Participant strategies in smoothly spatially-correlated
environments

In the smooth condition, no participants had a contributing β parameter (M=0,
SD=0), indicating that participants did not rely on global structural uncertainty
to direct their search (see Figure 5.5). All participants were partly explained
by the expected rewards under the GP (M=0.57, SD=0.32), and 8 participants
were almost exclusively explained by it (M=0.99, SD=0.02). The other 14
participants had an important local search term (M=0.41, SD=0.06) and novelty
term (M=0.22, SD=0.1). None of the participants had a significant greedy
component (M=0.03, SD=0.05). In general, these results seem coherent with two
of the strategy groups identified in Chapter 4: Maximisers and Local explorers.
One possible explanation for the absence of Scholars was that participants were
trained on the reward structure prior to the tasks so opted for local gradient
ascent steps. It could be that the nature of the reward structure made it easier
for participants to predict expected rewards and thus led more participants to a
Maximiser strategy as opposed to a Greedy local one.

5.3.2 Participant strategies in the rough condition

In the rough condition (n=19), three participants had a non-zero β parameter,
though this was practically insignificant (M=0.05, SD=0.01) (see Figure 5.13).
Similarly, four participants had non-zero greedy parameters, but these contributed
only modestly to explanations of their behaviour (M=0.01, SD=0.02). All
participants were explained by reward driven actions, as modelled by the expected
mean under the GP in the general model (M=0.74, SD=0.14), more so than in the
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Figure 5.6: Histograms over parameter values for participants in the rough
condition.

smooth condition (U(42) = 142.0, p = 0.07). Local search (M=0.15, SD=0.11)
and the novelty component (M=0.10, SD=0.05) were also important contributors
for participants. The local component contributed on average significantly less
than in the smooth condition (U(42) = 138.0, p = 0.05). The novelty term was
also less important in the rough condition than in the smooth, but not significantly
so (∆Med = 0.05, U(42) = 162.5, p = 0.17). In general, the strategies in the
rough condition as described by the general model seem to correspond to the
ones observed in the smooth condition, though with a higher tendency for reward
driven actions, and less local search. We look at the differences in strategies used
by participants in the next section.

5.3.3 Identifying clusters of participant strategies

To identify patterns in the different strategies used by participants, we use the
same individual differences model that we did in Chapter 4, including a Gaussian
Mixture Model to identify clusters in the MLE parameters fit to participant
selections. As in Chapter 4, we use leave one out cross-validation to estimate
the number of clusters

The mean negative log likelihood was estimated for a range of groups K=1,.
. . , 5 in each cross-validation fold. We removed one participant whose weight
parameters were zero from the participant data set under the assumption that
random/unpredictable behaviour was an independent cluster of behaviour. On
average, the cross-validation of the GMM indicated that a separation into two
sub-groups provided the most generalisable model, corresponding to the lowest
negative log-likelihood score on the test set (see Figure 5.7).

When looking at the cluster assignment probabilities, all participants were
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(a) Average rank of GMM with different num-
ber of clusters when comparing scores on test
set using 6-fold cross validation. The results
shown are from 20 evaluations.
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(b) Cluster assignment probabilities across
participants for K=2 clusters.

Figure 5.7: GMM cross-validation results and cluster assignment probabilities with
K=2 clusters.
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Figure 5.8: Cluster centre parameters obtained from the GMM clustering algorithm.

assigned to one of the two clusters with an average probability of 0.95 (SD=0.1).
The cohesion of clusters supports the hypothesis that distinct families of strategies
amongst participants exist. We show in Figure 5.9, 5.10, 5.11 and 5.12 examples
of participants belonging to the two sub-groups in each condition. We highlight
in particular the similarity with the strategies observed in Chapter 4, both in
the cluster parameters and in the qualitative patterns of behaviour exhibited by
participants. Accordingly, we refer to the participants belonging to two cluster of
participant strategy as Maximisers and Local explorers.

In the smooth condition, there were 15 participants clustered under the Local
explorer group, and 7 under the Maximiser group. In the rough condition, there
were 13 local explorers and 5 Maximisers. Bar 4 exceptions across both conditions,
this corresponded roughly to the Full-explore and Explore-exploit dichotomy
presented in Section 5.2.
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Figure 5.9: Example of of a Local explorer participant in the rough condition.

Figure 5.10: Example of a Maximiser participant in the rough condition.

Figure 5.11: Participant clustered under the Local explorer group in the smooth
condition.

Figure 5.12: Participant clustered under the Maximiser group in the smooth
condition.
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5.3.4 Preliminary discussion

So far, we have analysed the strategies used by participants across two experimen-
tal conditions: one where the correlation between location and reward is rough,
and one where it is smooth. By conducting an empirical analysis of participant
behaviour, we found that within both conditions there were significant differences
amongst individuals. Like in our experiments, we found that a significant propor-
tion of participants exclusively selected exploratory actions. This was the case
despite the fact that participants were familiar with the spatial correlation of re-
wards, knew the relative value of their actions (i.e. how close to the maximum
it was), and the high number of trials they were given (40 selections per grid).
To better understand participant strategies, we used the general model presented
in Chapter 3. From our model based analysis, two group of strategies emerged.
These strategies corresponded neatly to two of the ones described in Chapter 4,
in our own experiments: Local explorers and Maximisers. Local explorers, who
engaged in highly exploratory behaviour, principally relied on local search, were
influenced by the expected value of actions, and were driven by novelty. Maximis-
ers traded off between exploration and exploitation, meaning they converged on a
high value after a phase of exploration and re-selected it, and were predominantly
guided by the expected value of actions. Maximisers significantly outperformed
participants in the Local explorers group. Across both condition, there was no
evidence for participants relying on uncertainty to guide their search.

At the beginning of this chapter, we presented two psychological claims made
by Wu et al. (2018). The first claim is that participants have a tendency to
under-generalise. This was not investigated directly so far, though there was
strong evidence for local bias in the way participants explored. As we discussed
in the introduction, it is possible that local exploration may be partly influenced
by having a prior favouring lower degrees of correlation between action rewards.
The second claim is that participants rely on both directed exploration (towards
reducing uncertainty) and random exploration. This was not supported by
our model-based analysis, as no participants were explained by our model’s
uncertainty driven exploration component. Instead, local search, actions driven
by their expected rewards, and a bonus for novel actions were the three most
important components to describe how participants selected their actions. In
section 5.5, we compare the predictions of our model to the one presented by Wu
et al. and show that it offers better predictive power over participant selections.

The notion that people rely on generalisation to guide their search means
they construct a representation of the environment, where the outcome of unseen
actions is informed by previous observations, and use this model to inform their
actions. In the context of a rational analysis, when trying to understand the
computational problem people are solving, it suggests the way participants select
actions is adaptive to the structure of their environment. For example, if guided
by uncertainty, a smoothly correlated environment would encourage participants
to explore more globally, while rough correlations would encourage more local
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exploration due to the higher levels of uncertainty. Our model-based analysis
did not investigate to what extent participant were able to learn an accurate
representation of the environment, but simply assumed participants had correct
expectations about the correlation structure of the grids. One difference we
did find between the two experimental conditions was that participants in the
smooth condition explored more locally than participants in the rough condition.
In the next section, we relax the assumption that participants knew the correct
correlation structure and investigate participants’ ability to adapt to the structure
of their environment during search.

5.4 Generalisation in search

To understand how adaptive people’s strategies are to their environment, we first
look at the predictions of the general model when having the length-scale as a
free parameter. Fitting the length-scale can be interpreted as capturing partici-
pants’ expectation about the correlation between rewards in the grid, or to what
extent they generalise between nearby actions. So far, our models have relied
on an ideal observer analysis that evaluates to what extent people reduce global
uncertainty given that people hold correct assumptions about the underlying re-
ward structure. Our model results did not support the hypothesis that people
aim to reduce global uncertainty during search. Instead, people relied on local
search and the expected value of rewards. We now test the hypothesis that peo-
ple have a tendency to under-generalize, and that their expectation of rougher
reward structures leads them to select actions aimed at reducing local uncertainty.

We use the AIC to compare the model fits of the general model when fitting the
length-scale to participants against the general model where it is fixed. Fitting
the length-scale gave better AIC scores for all participants, both in the rough
and the smooth condition. The difference in scores was more pronounced in
the smooth condition (Mdn=51.22) than in the rough condition (Mdn=12.74)
(U(42) = 97.0, p = 0.002). To understand the contributions of the individual
components, we scale the parameters according to their range and normalise them.
Again, we find that uncertainty directed search was not a principal component
to explain participant behaviour. Only three participants had a non-zero β
parameter (M=0.14, SD=0.06) in the rough condition, and two in the smooth
condition ([0.18, 0.11]).

Next, we look at the length-scale for all participants. The length-scale
was a meaningful parameters across participants since they were all explained
by the expected reward under the GP with a value of at least 0.16. This is
compatible with the results found earlier, indicating that participants relied on
generalisation to guide their search. We find that in both conditions participants
had smaller length-scales than the true generating parameter value. In the smooth
environment (λ = 2), the average length-scale fit to participants was of 1.14
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Figure 5.13: Distribution over length-scale parameter values for participants in the
rough (λ = 1) and smooth (λ = 2) condition. Participants were able to adapt to the
structure of the environment and used larger “generalisation gradients” in the smooth
condition.

(SD=0.38). In the rough environment (λ = 1), the average length-scale was of 0.76
(SD=0.20). The length-scale fit to participants was significantly smaller in the
rough environment than in the smooth environment (t(42) = −3.89, p < 0.001).

In general, these results support the hypothesis that participants had used
generalisation to guide their search, had a tendency to under-generalise, and the
extent to which they generalised was adaptive to the structure of their environ-
ment. However, there was little evidence to support that participants relied on
uncertainty to guide their search, even when accounting for participants’ tendency
to under-generalise.

To better understand the psychological claims made by Wu et al. (2018) in
relationship to the predictions made by their model, we compare our general model
with λ as free parameter against their GP-UCB model, a well as its localised
variant (GP-UCB*).

5.5 Model comparison

It may be important to point out that the GP-UCB model was nested within
the general model (with free length-scale parameter), whereas its localised variant
(GP-UCB*) was not. The local component of the GP-UCB* model was multiplied
to the GP-UCB predictions, making it more difficult to tease their respective
contributions apart, while the local component of the general model was added
to the predictions of the other components.

We compare the AIC scores of the general model to the GP-UCB model, and
its localised variant presented by Wu et al. (2018). The general model gave sig-
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(a) AIC scores for participants in the smooth
condition.
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(b) AIC scores for participants in the rough
condition.

Figure 5.14: Boxplots show the median (line), interquartile range (box),and 1.5x
IQR (whiskers). Each individual participant is represented as a dot. The dotted line
shows the random baseline.

nificantly better AIC scores than the GP-UCB model (∆Med = −248.25, U(83) =
465.0, p < 0.001). Similarly, GP-UCB* produced significantly better AIC scores
than the vanilla GP-UCB model (∆Med = −178.6, U(83) = 496.0, p < 0.001).
The general model gave better scores than GP-UCB* (∆Med=-69.63), though
this was not significant (U(83) = 734.0, p = 0.16). Overall, 26 participants were
best predicted by the general model (with free λ), against 12 by the GP-UCB*
model, and 3 by the Vanilla GP-UCB model (see Figure 5.14).

To further evaluate the models, we look at the out of sample predictions of
the models by using the leave-one-out cross-validation procedure. Leave-one-out
cross-validation offers the benefit of directly estimating the predictive accuracy
of the model without having to arbitrarily penalise model complexity, contrary
to methods such as the AIC or BIC. This is done by iteratively fitting the
models on three grids, and generating out of sample predictions on the remaining
grid. We compare the prediction error by summing the log loss over all rounds.
Following Wu et al. (2018), we use a pseudo-R2 measure that compares the total
log loss prediction error for each model to that of a random model:

R2 = 1− logL (Mk)

logL (Mrand)

where logL (Mrand) is the log loss of a random model (i.e., picking options
with equal probability) and logL (Mk) is the log loss of model k’s out-of-sample
prediction error. Intuitively,R2 = 0 corresponds to prediction accuracy equivalent
to chance, while R2 = 1 corresponds to theoretical perfect prediction accuracy,
since logL (Mk) / logL (Mrand ) → 0 when logL (Mk) � logL (Mrand). R2 can
also be below zero when the model predictions are worse than random chance.

Here, the general model generated the best predictions for 27 participants,
while 13 participants were best predicted by the GP-UCB* and one by the general
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(a) R scores for participants in the rough con-
dition.
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(b) R scores for participants in the smooth
condition.

Figure 5.15: Boxplots show the median (line), interquartile range (box),and 1.5x
IQR (whiskers). Each individual participant is represented as a dot. The dotted line
shows the random baseline. Higher score is better.

model with fixed λ (see Figure 5.15). The general model provided significantly
better predictions across participants (∆Med = −0.067, U(83) = 642.5, p = 0.03).
In addition to the better performance of the general model, this result shows that
model comparison measures that take into model complexity (such as the AIC
above) may not be the most appropriate, especially when using regularisation
methods in the optimisation like we did for the general model. Indeed, a large
number of participant AIC scores had a complexity penalty for non contributing
parameters that were driven to zero due to the L1 penalty, while leave-one-out
cross validation remains agnostic to the number of parameters.

In summary, we have found that our general model is robust in predicting
participant performance, and was the best predicting model for most participants.
The analysis of the general model parameters, when fit to participants, showed
that participants did not rely on uncertainty to guide their search. Instead, they
mainly relied on the expected reward of actions, and local search paired with a
novelty drive. This is further supported by the fact that the vanilla GP-UCB
model was significantly worse at predicting participant behaviour than the other
models considered. Comparatively, the localised version of the UCB-model (GP-
UCB*) offered a significantly better predictive account than the non-localised one,
and relied on the uncertainty parameter β to make robust predictions. In the next
part we inspect visually the predictions of the localised GP-UCB model to better
understand its semantics and the psychological claims it carries. We select trials
where the predictions of the general model and the UCB-model* were distinct to
understand their differences.
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5.6 Investigating model predictions: Local un-

certainty as heuristic

In this section, we compare the predictions made by our general model, and the
GP-UCB* model advocated by Wu et al. (2018). The first participant was better
predicted by the general model (see Figure 5.17), while the second was better
predicted by the GP-UCB* model.

The first participant was fit with important contributions from the expected
reward term (α=0.39), local bias term (λ=0.29) and novelty component (ν=0.31).
The MLE under the GP-UCB* model gave a softmax value of τ=0.10, an length-
scale parameter of 0.62 and a β parameter of 0.58.

We find that the predictions made by the GP-UCB* model are exclusively
direct neighbours to the previous selection. In the case of the first participant,
this prevents the model from capturing some of the exploratory actions, where
the participant goes back to a distant tile near a previous selection (e.g. Trial 10,
15, 19, 38). In this case, the predictions of the general model are more flexible,
and seem to have a more nuanced model of uncertainty. In the case of the second
participant, the fact that the GP-UCB* puts weight on fewer actions leads to
better predictions overall (e.g. Trial 10, 15, 19), though this leads to few poor
predictions of participant selections (e.g. Trial 1 and 38).

The visual inspection of the predictions by the GP-UCB* model make it clear
that it is a model of local search, informed by local uncertainty and expected
rewards. Its predictions are very much like the line-search heuristic we discussed
in Chapter 2 and 3. The overall good predictions of the model when fit to
participant selections could suggest that participants rely on local uncertainty
to guide their search. This tendency to favour local uncertainty over global
uncertainty has been reported in active learning setting where people had to
learn category boundaries (Markant et al., 2016b), and could have several benefits
in terms of memory constraints and computational resources. One explanation
could be that local uncertainty is informative, and cheaper to compute than
global uncertainty. A similar phenomenon has also been found in causal learning,
showing that participants prefer local updates of their beliefs while keeping the
same general hypothesis instead of more sudden “global” updates (Bramley et al.,
2017). This preference for locally informative actions over actions aiming to
reduce “global” uncertainty has also been reported in the domain of visual search
tasks (Renninger et al., 2007).

5.7 Conclusion

In this chapter, we set out to investigate the importance of the environment
structure for participants’ search strategies. To do this we analysed data from
two experimental conditions collected by Wu et al. (2018). In one environment,
the rewards were smoothly correlated, while in the other the correlation between
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(a) GM: Trial 1 (b) GP-UCB*: Trial 1 (c) GM: Trial 10 (d) GP-UCB*: Trial 10

(e) GM: Trial 15 (f) GP-UCB*: Trial 15 (g) GM: Trial 19 (h) GP-UCB*: Trial 19

(i) GM: Trial 38 (j) GP-UCB*: Trial 38

Figure 5.16: Model predictions of a participant in the smooth condition at trial 1,
10, 15, 19 an 38. GM indicate predictions made by the general model. GP-UCB*
are predictions made by the localised GP-UCB model. The hue of a tile indicates
the probabilities predicted by the model. The red dot indicates the last selection, the
cross indicates the upcoming selection (the one to be predicted by the model). The
hued dots indicate previous participant selections, with a darker hue indicating more
recent selections.
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(a) GM: Trial 5 (b) GP-UCB*: Trial 5 (c) GM: Trial 12 (d) GP-UCB*: Trial 12

(e) GM: Trial 25 (f) GP-UCB*: Trial 25 (g) GM: Trial 33 (h) GP-UCB*: Trial 33

(i) GM: Trial 34 (j) GP-UCB*: Trial 34

Figure 5.17: Model predictions of a participant in the smooth condition at trial 5,
12, 25, 33 an 34. GM indicate predictions made by the general model. GP-UCB*
are predictions made by the localised GP-UCB model. The hue of a tile indicates
the probabilities predicted by the model. The red dot indicates the last selection, the
cross indicates the upcoming selection (the one to be predicted by the model). The
hued dots indicate previous participant selections, with a darker hue indicating more
recent selections.
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the outcome of similar actions was rough. In general, Wu et al. (2018) noted a
“remarkable concurrence between intuitive human strategies and state-of-the-art
machine learning research”, with “the vast majority of participants best described
by the Function Learning-UCB model or its localized variant”. Instead, we found
that the behaviour of participants carried many similarities to the behaviour
observed in our experimental data from Chapter 2. Specifically, we found similarly
salient patterns of individual differences in participant strategies to the ones found
in Chapter 2 and 4. Indeed, the “binary switch” observed previously in our
experiments, where some participants exclusively select exploratory actions, was
also very pronounced across the two experimental conditions from Wu et al.
(2018). Second, participants had a strong locality bias in their patterns of
exploration.

We examined the two main claims made by Wu et al. (2018) in their study
– specifically, participants’ tendency to under-generalise and the importance of
uncertainty directed search in their exploratory strategies. We looked at whether
the locality bias could be explained in terms of a tendency to under-generalise
about the similarity between actions. While we find that participants had a
tendency to underestimate the correlation of rewards across both conditions,
we found that under-generalisation could not explain alone participants’ strong
tendency for local exploration. Contrary to the modelling results of Wu et al.
(2018), we also found that participants were able to adapt the extent to which
they generalised to the structure of their environment. Finally, we compared
our general model to the localised GP-UCB model presented by Wu et al.
(2018). Overall, we found that our model offered a better account of participant
behaviour. Contrary to their claim, we found no substantial evidence in favour of
participants relying on (global) uncertainty during search. Instead we found that
participants mostly relied on local search, while leveraging expected rewards and
with an important drive towards novelty. One plausible hypothesis, supported
by their model but not put forward clearly in their paper, is that participants
aim to resolve local uncertainty during search. This heuristic could have several
benefits - it exploits the structure of the environment efficiently while avoiding
the expensive computational cost of representing the complete structure of the
environment.

In this chapter, we looked at participants’ decision strategies on tasks when
their underlying structure is known a priori. We found that participants were
indeed adaptive to the reward structures of the tasks in their exploratory search
strategies. In Chapter 2,3 and 4 we looked at participants’ ability to learn
and exploit the structure of new and unknown tasks. In the next chapter, we
investigate the ability of people to adapt to change and learn across tasks when
their structure may vary.



108 5.7 Conclusion



Chapter 6

Garden paths and adaptive
behaviour in changing
environments: A
resource-rational account

6.1 Introduction

At the start of this thesis, we set out to understand how people learn across a
sequence of different tasks. The first learning problem people are faced with comes
from the fact that the structures of our environment are not directly observable
and must be inferred from our observations. To study this, we focused on
people’s strategies when learning across tasks that shared structural similarities.
A second problem arising from the multi-contextual nature of realistic learning
environments is that change can occur with or without the presence of explicit
cues. This is the problem we focus on in this chapter.

When faced with changing environments, the task of the learner is to both
detect that change has happened and to learn a new model of the world. To
avoid restarting our learning every time we are faced with a change of context,
recognising familiar patterns and generalising across contexts is essential. When
adjusting to the balance of a new bicycle, facing a new opponent in a game, or
selecting an item from the menu of a new restaurant, we can rely on previous
experiences that will guide our actions in a way that is much more efficient than
if we had to relearn everything from scratch. We can, for example, recognise
patterns in someone’s play that are similar to a previous match, or feel excited
about seeing a dish that we tried in a different restaurant. Beneath this lies an
ability to segment our experiences in a structured manner, which allows us to
re-use them when relevant. How do people realise when a task shares structural
similarities with a previous one? Conversely, can we detect when a context has
changed and adapt to a new task without being misguided by irrelevant chunks
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of knowledge? For example, a recent trip to Italy might offer a misleading idea
of the spaghetti dish in a Scottish pub.

This challenge of continuously learning across multiple tasks remains largely
unsolved and is a topic of considerable interest (e.g. see Kirkpatrick et al., 2017;
Wang et al., 2016; McCloskey & Cohen, 1989). Unlike humans, a difficult task for
Reinforcement Learning algorithms has been to learn multiple tasks sequentially
without forgetting previously acquired knowledge: a phenomenon referred to
as “catastrophic forgetting”. We hope that a better understanding of some of
the facets of human behaviours in this domain can inform the design of better
algorithms.

So far, we have looked at the strategies of participants when faced with
sequences of tasks that shared the same underlying structure. We found that
many participants were able to learn and exploit the underlying structure of their
environment, and improved their performance across tasks. To better understand
the strategies of participants in goal directed exploration, we presented a general
model of human exploration. One of the limitations we highlighted, however,
was the inability to capture learning dynamics, specifically participants’ ability
to re-use previous knowledge and improve across tasks. Indeed, our model
assumed each task to be independent. x In this chapter, we examine the human
ability to self-direct their learning across multiple contexts, when the underlying
problem structures may change. An environment may change gradually over
time, which requires minor adaptation to the environment, however, there may
also be abrupt changes that require drastic adaptation, and a revision of the
structural assumptions about the environment and of the agent’s behaviour (Lloyd
& Leslie, 2013; Gershman et al., 2015; Qian et al., 2012). We investigate how the
sequential nature of learning might interact with people’s learning strategies. Our
experiments in this chapter are designed to study to what extent participants are
sensitive to changes and similarities between tasks and how this affects their
learning and performance.

Studying the assumptions of participants about the world, and how people
learn their expectation of change across tasks is particularly beneficial when par-
ticipants are able to self-direct their learning. Indeed, participants’ representation
of uncertainty is a key factor for successful adaptive behaviour, as they need to
rely on this when deciding to which extent they should explore more, or exploit
their current state of knowledge.

When learning across different tasks, it is crucial to have an accurate model
of the environment to be able to predict events and achieve desired goals. An
agent’s beliefs about changing contexts can be incorporated into the Bayesian
perspective by specifying how the parameters (θ) representing the structure of
the world evolve over time. Bayesian models can express different assumptions
about the world, and hence capture different types of regularities. By focusing
on, or ignoring, different parts of a learner’s experience, different models allow for
contrasting predictions (Courville et al., 2006). A model that assumes all tasks
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to be independent might behave very differently from a model that assumes them
all to share the same reward structure.

Studies have shown that people are able to adapt their decision strategies
in the face of change. In the case of environments where the reward structure
changes gradually, participants have been shown to adapt their behaviour to the
volatility of their environment similarly to ideal Bayesian agents (Speekenbrink
& Konstantinidis, 2015; Behrens et al., 2007; Angela, 2007). In the case of
abrupt change, some studies have suggested that rather than adapting the current
representation of the environment, the previous representation is abandoned
altogether in favour of a new one (Bouton, 2004; Redish et al., 2007).

Prior to our experiments, we hypothesised that people rely both on contextual
cues to detect change (i.e. a visible change of environment) and on a learned
volatility of their environment. Two sources of uncertainty thus have to be taken
into account by the learner in our task. First, the possibility of change in structure
of the environment, and second, the error stemming from the discrepancy between
the beliefs of the learner (their current world model, or prior) and the actual
structure of the world (Speekenbrink & Shanks, 2010; Qian et al., 2012; Yu &
Dayan, 2005; Bland & Schaefer, 2012).

We designed the sequence of tasks by using tasks that shared structural
similarities (like in the previous chapters) and tasks that were fundamentally
different structurally to better understand the mechanisms at play when learning
in the face of change. In a first part, we present our experimental set-up before
analysing the behaviour of participants. In our results, we find that participants
are able to exploit the structural similarities and improve across related tasks, as
well as adapt to change. In some cases however, participants were consistently
unable to adapt to a new simple task. In a second part, we compare models
with different assumptions about the dynamics of change across tasks to better
understand the behaviour of participants. Specifically, we explore evidence for
hypothesis sampling in active learning to try to explain both when people succeed
and when people fail at adapting to different tasks.

6.2 Experiment 1

In Chapter 2, we presented four experiments in which participants were presented
with three grids, all sharing a common pattern. Our analysis in Chapter 2, 3 and
4 focused exclusively on these initial three grids. In this chapter we consider the
full sequence of tasks presented to participants in Experiment 1, which included
six further grids.
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6.2.1 Methods

Participants

The experimental data in this section comes from the same experiment as Exper-
iment 1 in Chapter 2. We recruited 79 participants using Amazon’s Mechanical
Turk service. They received $0.75-$1, which was doubled for participants whose
final scores were in the top 10 percent. Following the instructions given to partic-
ipants, we excluded participants whose performance was worse than chance (n =
3). We also excluded participants who failed to select more than 2 different tiles
on the majority of grids (n = 5), as it showed a lack of engagement with the task.

Participants were presented with three blocks of three grids (i.e. 9 grids
in total). To evaluate participants’ ability to improve across blocks of grids
we designed a control condition that omitted the initial block of grids. We
recruited 44 further participants for this control condition. Participants were paid
according to the same reward scheme than in the experimental conditions. In the
control condition, one participant was excluded for performing below chance. Two
participants were excluded for failing to select more than 2 different tiles on the
majority of grids.

Procedure

Participants were told they would see 9 grids composed of 81 tiles (9x9). For
each grid, they had 20 turns to select tiles in order to maximise their overall
score. During the experiment, the number of turns left is continuously displayed.
Participants were told there may be an underlying pattern behind the reward
associated to the tiles. Before seeing the first grid, participants were first presented
with a familiarisation grid to learn how to select tiles, where the brightness and
associated rewards are sampled independently at random. In the actual game,
we use two different rules to determine the reward distributions of the grids:

1. In the location rule, the location of a maximum reward value tile is
sampled at random from the grid. The reward associated to each tile is
exponentially smaller, the further away it is from that maximum tile. We
used an exponential decay constant of 0.4, yielding a large difference between
the maximum and its closest neighbour, in order to reward participants
that found the maximum in a grid. This was the only rule used in the
experimental data presented in Chapter 2.

2. In the brightness rule, the rewards are linearly proportional to the
brightness (i.e., rendered gray-scale values between black and white) of
each tile. The brighter the tile, the higher the reward. The distribution
associated with the brightness of the tiles is the same as the reward
distribution in the location rule, meaning that both rules share the same
distribution of rewards.
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Figure 6.1: Example of each type of grid presented to participants. The size of the
red circle is proportional to the reward associated with the tile. LU: Location Uniform,
L: Location, B: Brightness.

To prevent participants from simply learning the maximum reward and as-
sessing their performance with respect to that value, the maximum reward for
a given grid is sampled from a normal distribution N(µ = 200, σ2 = 502). All
reward values are rounded to the nearest integer in the games. We report the nor-
malised scores (between 0 and 1) of participants to compare and evaluate their
performances.

Participants were shown three blocks of three grids in orders differing accord-
ing to their experimental condition. The three types of grids presented in blocks
to participants are shown in Figure 6.1. The order in which the blocks were pre-
sented for each condition is detailed below and can be seen in Figure 6.2.

Our aim was to design experimental conditions to better understand people’s
ability to adapt to different kinds of environmental changes. Specifically, we
manipulated 1) the presence or absence of contextual cues indicating change and
2) participants’ expectation that sudden change may occur.

Participants were separated into two experimental conditions: Brightness First
and Location First.

In the Brightness First (BF) condition, participants were initially presented
with a block of three grids that follow the location rule, where all tiles are
of uniform brightness. We call this block LU for Location rule with Uniform
brightness. Next were three grids that follow the brightness rule (or B grids).
Finally, participants were presented with three location grids (L grids), where the
brightness of each tile was distributed in the same way as in the B grids but was
this time irrelevant to the reward function. In the BF condition we were first
interested in observing whether participants can detect the change between LU
and B grids, which is accompanied by a contextual cue (i.e. a different visual
appearance for the different grids). Second, we were interested in their ability to
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detect change between B and L grids, in the absence of cues marking the change
of context (B grids and L grids are visually similar).

In the second condition, named Location First (LF), participants were pre-
sented the three same initial LU grids, this time followed by the L grids (location
rule with distracting brightness cues), and finally the three B grids. This contrast-
ing condition was designed to first test whether participants are able to directly
re-use structural knowledge between LU and L grids despite the change in ap-
pearance. Second, we wanted to observe to what extent participants would be
able to detect change between L and B grids in the absence of explicit cues.

We also hypothesised that the expectation of change may have an effect of par-
ticipants’ ability to adapt to change. In the first BF condition, participants were
shown abrupt change with a contextual cue after 3 grids, whereas participants in
the LF condition did not see any change of structure until the 7th grid.

In the control condition, participants started directly with a block of L grids.
We compare their performance to the performance of LF and BF participants
on their respective blocks of L grids. We do this to evaluate possible transfer
effects between LU grids and L grids, which share the same underlying structure
but differ in appearance. In the case of LF participants, the underlying rule
remains the same but the brightness cues appear when switching to L grids. We
refer to this case of knowledge re-use as direct transfer. We saw in Chapter
2 that participants were able to improve across LU grids. Here we look at
whether participants can also detect the hidden similarity between grids, when
their appearances differ (presence of brightness cues versus absence). In the BF
condition, participants have to detect a change has occurred and recall the L rule
after three B grids. We refer to to this as long transfer.

6.2.2 Results

Chapter 2, 3 and 4 focused on the performance of participants in the LU grids.
Here, we start by giving a general overview of the patterns of performance in
the two other blocks of grids (L and B) in both conditions to understand the
general ability of people to deal with change when learning across tasks. We
then conduct an analysis that examines individual differences by looking at the
behaviour of participants according to the strategy types we identified in Chapter
4. We hypothesised there would be marked differences in people’s ability to adapt
following the type of strategies they used in the initial three grids, specifically
regarding their use of a representation of the environment.

Brightness grids

In this section, we study participants’ ability to adapt to a change of rule with
(Brightness First condition) and without explicit cues (Location First condition).
Participants in the BF condition adapted very efficiently to the brightness grids,
achieving a median score of 0.79 over all three grids. This was in severe contrast
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Intro (w. location)

Hidden Reward

Location Brightness

Brightness Location

Experimental conditions

location first

brightness first

Location Uniform

Figure 6.2: Experimental conditions in Experiment 1. The top row sequence was
presented to the Location First condition, the bottom row sequence was shown to the
Brightness First condition. Each grid type is shown three times in a row. Top row
shows Location First condition. Bottom row shows Brightness First condition.
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Figure 6.3: Experimental results of Location First (LF) and Brightness First (BF)
conditions. Each plot contrasts the performances of participants in the LF and BF
conditions. The left column shows the performances of participants on the three LU
grids (intro grids). The top row shows their performances on the brightness grids. The
bottom row shows their performance on the location grids. In general, participants
improved across grids of the same block. BF participants had significantly better
performances on the brightness grids than LF participants.
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with the median performance of 0.47 from the participants in the LF condition
(∆Med = 0.32, U = 345.0, p < 0.001) (see Figure 6.3). It’s important to note that
in the BF condition the rule change was accompanied by an observable change of
context (from LU to B grids the brightness cues become salient), but not in the
LF condition (from L to B the brightness cue distribution is similar across grids).

To assess participants’ ability to improve across grids, we used a general linear
model (GLM), with the reward as outcome variable. The turn and grid index
were used as predictor variables. Participants in both conditions improved their
performance across grids. In the BF condition, the coefficient of improvement
over B grids was 0.04 (se = 0.01, p < 0.001), while the intercept was 0.53
(se = 0.01, p < 0.001). In the Location First condition, the coefficient of
improvement over B grids was of 0.07 (se = 0.01, p < 0.001) while the intercept
was 0.28 (se = 0.02, p < 0.001). Despite the larger grid improvement coefficient,
LF participants still performed worse in their third brightness than the first
brightness grid of BF participants (∆Med = 0.29, U = 484.0, p = 0.05), showing a
continued inability to adapt to the change in reward pattern.

Location grids

In this section, we look at participants ability to transfer structural knowledge
when the tasks look visually different but shown consecutively (Location First con-
dition), or separated by a different type of task (Brightness First condition). We
focus on participants’ performance on the L grids (location rule with distracting
brightness cues) in both conditions. Despite the different sequence of presenta-
tion, there was no significant difference in performance on the L grids across the
two conditions (∆M = 0.03, t = 1.00, p = 0.32). There was no significant progress
in the LF condition (b = 0.01, se = 0.01, p = 0.28), while participants in the
BF condition did show evidence for improvement (b = 0.02, se = 0.01, p = 0.001).
This can be explained by the fact that participants in the BF condition had to de-
tect a change of rule, while LF participants did not. To understand to what extent
participants were able to re-use structural knowledge from the initial LU grids, we
compare the performance of participants to that of the control condition (L grids
with no pre-training on LU grids). In both conditions (LF and BF), participants
had better average performances in the L grids than in the control condition. In
the LF condition (∆M = 0.11, t = 3.97, p < 0.001) this indicates that participants
were able to do direct transfer, detecting that the structure was similar despite
the change in appearance. In the BF condition (∆M = 0.08, t = 3.0, p = 0.003), it
indicates that participants were able to do “long transfer”, and re-use the learned
structure from the LU grids in the L grids. The latter shows that participants were
able to detect the change of rule in the absence cues and leverage the structural
similarity with LU grids.

Before presenting a summary of our analysis about people’s ability to adapt
to change across different contexts, we wanted to better understand the patterns
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of exploratory behaviour observed in participants, particularly the local bias
discussed at length in the previous chapters.

Local bias in search

When analysing the behaviour of participants in the initial LU grids in Chapter
2 and 4, we found a strong bias towards selecting local actions. This locality
bias was also found in the data of Wu et al. (2018) we presented in Chapter 4.
This local bias existed in the B grids too, both in the LF (t = 5.47, p < 0.001)
and BF (t = 8.55, p < 0.001) conditions. Participants in the LF condition
(M=2.71, SD=0.76) selected significantly more locally than BF participants
(∆M = −0.53, t = −2.43, p = 0.02). In the LF condition, this can be explained by
the fact that participants did not adapt to the B grids and assumed the rewards
were still spatially-correlated.

To better understand the nature of people’s bias towards local actions, we were
interested in seeing whether participants also had a “local” bias in the brightness
dimension. i.e. if they were more inclined to select actions that were of similar
brightness values to their previous selection. To evaluate this, we looked at the
B grid selections of participants in the BF condition. This was not the case, as
participants in the BF condition selected actions that were slightly more distant
in brightness than random (∆M = 0.02, t = 2.06, p = 0.04).

The fact that participants had a local bias in the B grids even when they
had adapted to the change of rule and the absence of a bias in the brightness
dimension both hint at the idea that it may be specific to spatial features. The
locality bias could perhaps be explained by the fact that selecting on a distant
tile requires more effort for participants, and thus constrains which tile they will
select next. Another hypothesis could be that participants did not rely on a a
local bias in the brightness dimension because the problem was uni-dimensional
in the B grids, thus making it easier to explore. The L grids, on the other hand,
were bi-dimensional, potentially making it more difficult to represent and explore
efficiently.

Discussion of empirical results

In Chapter 2 and 3, we highlighted participants’ ability to improve their per-
formance across tasks when sequentially presented with grids of the same type.
Similarly, participants were able to improve across the sequence of L and B grids.
In general, we found strong evidence in support of participants being able to
detect and exploit similarity between grids. This was true when the structural
similarity was not directly observable, like when transitioning from LU to L grids
in the Location First condition. It was also the case for non-adjacent tasks, like in
the Brightness First condition, where participants were able to do long transfer,
and outperformed participants in the control condition.

When looking at participants’ ability to change, we found that participants
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were able to efficiently detect and adapt to change. Participants were able to
learn and exploit the brightness rule in the Brightness First condition already
from the first grid, when the change was marked by an explicit cue. Participants
were also able to detect change without any explicit cues, when adapting from the
B grids to the L grids in the Brightness First condition. However, participants
in the Location First condition failed to adapt to the brightness rule, despite its
apparent simplicity and throughout the three grids they were presented with. One
hypothesis for this is that people learn an expectation of change, or a degree of
volatility, about their environment. Indeed, participants in the BF condition were
able to adapt both when change was observable (LU to B) and hidden (B to L).
It is possible that participants learned to expect change in this case, since they
experienced it early on and jointly with a visual cue marking the change of context.
The inability of LF participants to adapt could be due to the assumption that
the underlying pattern would remain the same, since they were presented with
a sequence of six grids following the same reward pattern prior to the change of
rule. We test this hypothesis with the use of computational models in Section 6.3.

In Chapter 4, we used a model of individual differences to differentiate
participant strategies. In the next section we look at how participants’ strategy
type influenced their ability to adapt to change across different tasks.

6.2.3 Individual differences in adaptive behaviour

In the previous chapters, we highlighted the important differences that existed
between participants. Specifically, we identified four groups of strategies used
by participants in Chapter 4. In this section, we analyse participants’ ability
to adapt according to the strategy they used in the initial block of LU grids,
assuming that their general patterns of behaviour would be consistent across
all nine grids. We thus re-use the clusters identified in Chapter 4 and examine
the performance of participants according to their respective groups. We look
specifically at participants ability to adapt to brightness grids across both
conditions, since the brightness rule was novel to participants. We hypothesised
that participants relying on model based strategies (i.e. Scholars and Maximisers,
both with dominant contributions by the GP model components) would be better
at adapting than participants mostly described by the heuristics components of
our general model (Local explorers and Greedy locals).

Brightness First condition

In Figure 6.4, we show the performance of participants clustered according to
their strategy on LU grids. We find that the clusters had qualitatively different
types of behaviours. Both Maximisers and Scholars performed better than Local
explorers and Greedy locals. An analysis of variance (ANOVA) shows that
there was a significant difference in performance between Local explorers and
both Maximisers and Scholars (F=4.86, p=0.01). Greedy locals also performed



120 6.2 Experiment 1

Figure 6.4: Performance of BF participants on Brightness grids according to their
strategy type. The uncertainty marks the 68% Confidence Interval.

worse than Maximisers (∆M=0.17) and Scholars (∆M=0.11), though this was
not significant under the Tukey post hoc test. When looking at the ratio of
exploration across sub-groups, Local explorers explored significantly more than
all other three groups (F = 7.64, p < 0.001). These results followed our hypothesis
closely in that participants best fit by model based strategies (Maximisers and
Scholars) adapted efficiently and had good performances, whereas participants
who were best fit by heuristics (or model free) strategies adapted slower in the
case of Greedy local participants, or not at all in the case of local explorers.

Location First condition

We show in Figure 6.5 the performances of the different sub-groups in the LF con-
dition. Maximisers had the best average performance (M=0.64, SD=0.12), fol-
lowed by Scholars (M=56, SD=0.21), Greedy locals (M=0.52, SD=0.17) and Lo-
cal explorers (M=0.42, SD=0.08) but there were no significant differences across
groups (F=2.0, p=0.14). When looking at the amount of exploration conducted
by participants across the different sub-groups, Local explorers explored signifi-
cantly more than Maximisers and Scholars (F = 4.26, p = 0.01). The difference
was also substantial between Local explorers and Greedy locals (∆M=0.23), but
was not significant under the Tukey post hoc test. Next, we compare the per-
formance patterns of participants across both conditions. These results were not
clearly predicted by our hypotheses, as all sub-groups failed to adapt efficiently
to the change of rule. This points toward a common process that may have led
participants to fail at detecting the change of context and learning the new reward
structure.

Differences between Location First and Brightness First conditions

The rate of improvement for Maximisers over trials was of 0.03 (se=0.002) in
the LF condition with an intercept of 0.23 (se=0.03), indicating that participants
selected significantly better actions as they collected more observations. This
was not the case for Maximisers in the BF condition, who had a higher intercept
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Figure 6.5: Performance of LF participants on Brightness grids according to their
strategy type. The uncertainty area marks the 68% Confidence Interval.

value (b=0.61, se=0.03) and a relatively low improvement coefficient over trials
(b = 0.01, se = 0.003). There was no real progress across grids in the LF condition
(b = 0.01, p = 0.47). This can also be seen in Figure 6.5, where participants show
consistent linear progress for the first ten selections across all three grids, failing
to select bright tiles early on. Conversely Maximisers (and Scholars) in Figure 6.4
select high value tiles from the beginning and displayed flat performance curves
across trials.

Overall, we find that there were noticeable patterns of behaviour characteristic
to each sub-group, though our sub-group analysis was limited by the small sample
sizes. Participants in the Maximiser group showed the best performance overall,
followed by Scholars and Greedy locals, while Local explorers performed consis-
tently worst. Much like in the LU grids, Local explorers explored significantly
more than the other sub-groups across both conditions. Scholars and Maximisers
adapted quickly to the brightness rule in the BF condition, selecting bright tiles
early on in the grid. In the LF condition, participants needed more trials to select
bright tiles, and did not show any significant improvement across grids in their
ability to adapt and learn the new rule.

In the next part, we use computational models to better understand partici-
pants’ ability to both behave adaptively, in the case of the BF condition, and at
times fail to do so dramatically, like in the case of the LF condition.

6.3 Resource rational account of adaptive be-

haviour

6.3.1 Detecting change

Following a Bayesian perspective, we can model an agent’s representation of
the environment as a generative probability distribution. We can measure the
model’s likelihood as the conditional probability of current observations given
the model, or p({x, y}|θ). When an agent is faced with a new environment and
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does not know the structure of the task very well, it will lead to high prediction
errors (P (yi|θ, {x, y}i−1n ) ). The prediction error will also be high if the agent
knows the task structure well but a change of environment has occurred. Only
the second type of prediction error will be informative to detecting change of
context. Having an accurate model of the environment is therefore essential to
detecting change. It is particularly important to decide what observations to take
into consideration when making predictions about the world is, as it is essential
that the representation of the environment reflects the current state of the world
accurately and supports the prediction of future states. We will refer to the
uncertainty about the underlying structure of a task as structural uncertainty.
High prediction errors have been shown to positively correlate to the learning
rate of participants (Behrens et al., 2007; Nassar et al., 2010; Speekenbrink &
Konstantinidis, 2015; Courville et al., 2006). This indicates that people might
adapt and learn in changing contexts in an optimal (or near optimal) way: fine-
tuning their model with a small learning rate in the case of stable environments,
and revising their beliefs aggressively when their prediction error is high.

Intuitively, having an accurate expectation about change in the environment
will benefit the learner, particularly in situations where there is ambiguity about
change of context. Ambiguity can arise when the underlying structure is uncertain
because the task is difficult, or because only few data have been observed. If a
learner assumes that an environment is stable, they are unlikely to be aware of the
context ambiguity and will fail to detect and adapt to a new context. Conversely,
if a learner assumes that change is very likely, they may fail to generalise and
overfit the data (O’Reilly, 2013).

Ideally, the learner would have a correct estimation of the probability of change
before the learning begins, but this is only possible when there is some familiarity
with the task environment. When faced with a new environment with cues and
features different from anything that’s been encountered before this is not possible,
since there is no way of knowing when or how the environment will change.

In the next section, we present a family of algorithms as a suitable candidate
to explain how people might update their beliefs about the underlying structure
of tasks in a changing world despite these difficulties.

6.3.2 Inference by sampling

Approximate inference methods, that focus on managing the trade-off between
computation time with accuracy, have offered an interesting ground for theories
that take into account cognitive constraints. One particularly popular theory
comes from sampling algorithms. These algorithms approximate complex proba-
bilistic distributions by using a collection of samples (Sanborn, 2017). The idea
that each individual might only hold one of few samples from the posterior distri-
bution over hypotheses has been a recently popular model of cognitive constraints,
serving as a bridge between rational analysis and process models (Griffiths et al.,
2012; Goodman et al., 2008; Vul et al., 2014). These kind of models, named ratio-
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nal process models, have been used to successfully account for a range of cognitive
biases that Bayesian models had left unexplained (Sanborn et al., 2010).

One important signature of inference by sampling (also known as ‘hypothesis
sampling’) is sensitivity to the order of data. Particle filters is an example of such
hypothesis sampling models. Hypothesis sampling refers to the idea that people
maintain a tractable number of individual hypotheses (or ‘particles’) instead of
having a representation of the complete posterior. Under a particle filter model,
a learner can trade off cognitive resources with accuracy by limiting the number
of samples. When considering a smaller set of hypotheses, a learner is able to
reduce the cognitive resources necessary (i.e. memory and computation), at the
cost of a less accurate approximation of the posterior. This family of algorithms
has been recently used to produce order effects consistent with human behaviour
across a range of tasks, such as causal learning (Abbott et al., 2011), category
learning (Sanborn et al., 2006) or symbolic concept learning (Thaker et al., 2017)
that were otherwise unexplained in a Bayesian framework.

We thus turn to particle filter to understand whether the sequential effects
observed in our experimental data can be explained by the behaviour of particle
filter algorithms. In the next section, we introduce a general template for the
particle filter algorithm as well as the the parameters that influence its behaviour.

6.3.3 Particle Filters

Particle filtering is an algorithm that belongs to the family of sequential Monte-
Carlo methods (SMC) (Doucet & Johansen, 2009). One difficulty in MCMC
methods is to sample from the posterior distribution. A frequent way of
overcoming this, is to sample a set of particles

{
h1, . . . , hM

}
from a proposal

distribution (e.g. the prior Q(h)) and weight those to make up for the fact that
they were not direct samples from the posterior.

hm ∼ Q(h), wm ∝ P (X|hm)P (hm)

Q (hm)

The weighted particles are then used as the approximation to the posterior.
It is often the case, that some or most hypotheses are irrelevant to the posterior,
and only a few particles will be assigned all of the probability weight. This is
a problem known as the degeneracy of the sample set. To rid of this, we can
delete the unlikely hypotheses, and resample from (or close to) the important
hypotheses, according to their importance weights. During the resampling step,
a new set of particles are proposed and selected from a distribution based on the
previous set of particles and their normalised importance weights.

h̃mn ∼ P (hn|hn−1) , wmn ∝ wmn−1
P (xn|hm)P (hm)

Q (hm)

Particle filtering solves the problem of having to recompute the posterior over
all previous data points at every new observation by updating the particle weights
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online. At each time step, the posterior is approximated through the discrete dis-
tribution of each particle and its normalised weight. In this case, we take Q(h)
to be the prior P (h), which is easy to sample from. This simplifies the weights to
wmn ∝ P (xn|hm), i.e. the normalised likelihoods.

We investigate the explanatory power of hypothesis sampling by looking at
model simulations. Participants select a sequence of actions and have to evaluate
possible hypotheses about the underlying reward structure of the current grid
given their observations. Under our model a hypothesis is represented by a particle
hm, which consists of the hyperparameters of a Gaussian Process model. These
hyperparameters define the importance of each feature (the x,y coordinates of a
tile and its brightness b) and their functional relationship to a tile’s associated
reward. In other words, these parameters (jointly with the choice of the kernel)
define the space of functions considered by the GP. The particle filter is responsible
for the inference problem of estimating the GP parameters.

Like we did for the general model, we use an RBF kernel as a generative
model over possible functions (see Section 3.3.2). For simplicity, we use Thompson
sampling as a decision strategy. Thompson sampling, unlike the Upper Confidence
Bound acquisition function, is parameter free and corresponds to probability
matching – a pattern of behaviour observed in people (see Vul et al., 2014,
for a review). To trade off between exploration and exploitation, Thompson
sampling draws a sample from the posterior (provided by the GP in our model)
and selects the best action given that sample. Sampling from the posterior takes
into account both the expected value of actions and their associated uncertainty.
This provides a balance between the exploration of uncertain actions and selecting
known rewarding ones.

6.4 Model simulations

6.4.1 Particle Filter parameters

To understand the ability of participants to progress across grids, we first look at
the importance of the initial set of particles. We consider an initial proposal that
is appropriate to the task structure (correct prior). For this we sample the initial
particles from a half-normal distribution with the mean set close to the empirical
parameters (SD=0.05). We sample the length-scales from a gamma distribution
centred around their empirical parameters (shape=3, scale=.15). We contrast
it with a proposal where the particles do not correspond to the grids’ reward
structures (incorrect prior). We use a non-informative (uniform) prior for the
GP kernel weight parameters and an exponential distribution (µ=0.01) for the
length-scales, implying a low correlation between features and rewards. Given
these two priors, we compare three resampling schemes:
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No Resampling In this scheme, the initial set of particles is carried over without
ever resampling. This means that the set of hypotheses considered remains con-
stant throughout the different tasks. This scheme can be understood as treating
all tasks as independent of one another given that no learning happens across
tasks since re-weighting happens at every time step independently.

Static Adaptive Resampling Here, particles are resampled when the variance
of the weights is too large, i.e. when only a few particles carry explanatory power.
This is calculated by the Effective Sample Size (ESS), where the ESS ≈ ‖wt‖−2.
Similarly to Abbott et al. (2011), we set a threshold at 0.10N, ten percent of the
number of particles. Successful particles are carried over according to their weights
following the systematic resampling algorithm (Doucet & Johansen, 2009).

Adaptive Resampling with jitter This last resampling scheme uses the
same ESS threshold as the previous model and resampling algorithm. During
resampling, new particles are sampled from a Cauchy transition kernel (γ=0.1)
centred around the resampled particle. The Cauchy distribution has most of its
probability mass narrowly distributed around 0, but has heavy tails, inducing
occasional rare “jumps” in parameter values. While this disturbance introduces
imprecisions in the approximation, these are just added noise and allow the
introduction of new hypotheses to the particle population. Introducing new
particles to the population is often referred to as a “rejuvenation step” and
leads to considering a more diverse set of hypotheses. We name this sampling
scheme “Adaptive Resampling with jitter” to not confuse it with rejuvenation
schemes that rely on Metropolis-Hastings steps. Abbott et al. (2011) suggested
that rejuvenation and resampling could correspond to deliberative reasoning, a
process that is more computationally expensive than simply updating the weights
of particles. Considering new or alternative hypotheses adaptively could be a
resource rational strategy, triggered by a given state of the environment or of the
learner, saving them from constantly having to evaluate an intractable amount of
hypotheses at every time step.

6.4.2 Explaining transfer and adaptation across tasks

In this section, we look at simulations of particle filter models with different
assumptions about learning dynamics to better understand the behavioural
phenomena observed in our experiments. We first compare the performance
results of particle filter models on the Brightness First condition. We focus on the
phenomena of direct transfer and adaptation to change, and omit the last block
of L grids. We discuss the case of “long transfer” in a later section.

We show the performance of BF participants on the first 6 grids in Figure 6.6.
Here, we look specifically at the performance of participants who showed they
were able to exploit the structure of the grids by reselecting tiles in the tasks
(n=23) (named explore-exploit participants in Chapter 2). The two phenomena
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B

Figure 6.6: Human data showing participants’ ability to progress across trials and
adapt to a change of environment structure. The error bars show the SEM.

we are interested in capturing here are participants’ ability to progress across
grids, and the ability to adapt to the change of reward structure.

Of the six models we evaluated, the model with the adaptive resampling with
jitter scheme and an incorrect initial proposal showed both progress across grids
and the ability to adapt to the change of rule (see Figure 6.7). Models with an
appropriate proposal for the initial set of particles did not show progress across
grids since they already showed good performances in the initial grid. Models with
static adaptive resampling did not adapt to the change of rule, as the particles
coherent with the B grids were filtered out during the LU grids. The never
resample scheme adapted to the change of rule, but did not progress across grids.

Here, the particle filter account of participant behaviour presents transfer
across similar tasks as a gradually more accurate representation of the posterior
that happens by resampling around the best particles from previous grids.
Adapting to a change of task structure happens through deliberative reasoning,
which happens strategically when the hypotheses under consideration explain the
observed data poorly. Next, we focus on participants’ inability to adapt to the
change of rule in the LF condition and whether it can be explained by hypothesis
sampling.
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B

Figure 6.7: Performance of particle filter model with adaptive resampling with jitter,
and an incorrect proposal for the initial set of particles. The model progressed across
trials, and was able to adapt from the Location reward pattern to the Brightness
reward pattern. The error bars show the standard error of the mean.

6.4.3 Garden paths in self-directed learning

In this section we consider participants’ inability to adapt to a change of task.
The performance of LF participants was significantly worse on the B grids than
BF participants (see Figure 6.8), and LF participants failed to adapt throughout
all three grids.

Again, we consider the six models presented earlier. The only model that
performed well on the L tasks, but did not adapt to the B grids was the
particle filter with static adaptive resampling and with a correct initial proposal
distribution. These simulation results suggest that hypothesis sampling can
explain the poor performance of participants as a garden path, where participants
were not able to consider alternative hypotheses than the ones considered during
the previous grids. In Figure 6.9, we contrast the performance of the two
particle filter models that best matched participant behaviour in the BF and
LF conditions.

In the previous section, we found that resampling with jitter could explain both
transfer across tasks of similar nature, and the ability of participants to adapt to
change when the structure was new. In the LF condition, static resampling (i.e. no
renewal of the particle set) explained participants’ inability to adapt. What could
trigger participants to rely on a strategy akin to resampling with jitter in one case
but not the other? We suggest two plausible explanations: 1) Participants did not
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Figure 6.8: Human data: Performance of Brightness First and Location First
participants on the three Brightness grids.

Figure 6.9: Performance of particle filter models best matching participant
behaviour in the B grids. In the BF condition (black) the best matching model
was a particle filter with adaptive resampling with jitter. In the LF condition (yellow)
it was a particle filter with Static Adaptive Resampling .
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realise the environment had changed, or 2) they did, but failed to generate better
hypotheses during resampling. If the former is true, it would support deliberative
reasoning being triggered by a state of the agent, and not just their environment.
It is possible, for example, that people rely on their expectation of change, i.e.
an estimation of the volatility of their environment, to inform their decision to
spend mental resources on generating alternative hypotheses. In the LF condition,
participants would have learned the environment has very low volatility after six
grids following the L rule, and thus failed to consider the environment may have
changed.

Some studies have highlighted that high prediction errors positively correlate
to the learning rate of participants (Behrens et al., 2007; Nassar et al., 2010;
Speekenbrink & Konstantinidis, 2015; Courville et al., 2006). This indicates
that people might adapt and learn in changing contexts in an optimal (or near
optimal) way: fine-tuning their model with a small learning rate in the case of
stable environments, and revising their beliefs aggressively when their prediction
error is high. However, because of the change of reward structure, we expect
participants to have had relatively high prediction errors when changing to the B
grids. This leads us to consider the second hypothesis, namely that participants
did not find a fitting hypothesis after realising the reward structure had changed.
This is perhaps surprising given the simplicity of the Brightness rule, and the
high performance of participants in the BF condition. Participants’ inability to
generate an appropriate hypothesis could be explained by a phenomenon known
as dimensionally selective attention. A number of studies have shown that people
learn to selectively attend relevant dimensions (Niv et al., 2015; Kruschke, 1992;
Nosofsky, 1986). Selective attention can be linked to assuming the number of
relevant features to be sparse when learning the structure of the world (Wilson
& Niv, 2011; Gershman et al., 2010a; Kemp & Tenenbaum, 2009). This sparsity
assumption has been shown to greatly alleviate the computational cost of the
RL problem. In our experiment, selective attention could have caused people to
exclusively consider hypotheses in the x,y dimensions, and thus fail to consider
hypotheses involving the brightness dimension since it was irrelevant in previous
grids.

6.4.4 Representing structure, long transfer and memory

Though we did not examine long transfer in our models, we discuss here how
memory mechanisms might support participants’ ability to re-use knowledge
across non-adjacent tasks. In the BF condition, we saw that participants were
able to improve their performance on the L grids thanks to having learned the
location rule in the LU grids earlier. This was the case despite no explicit cueing
that change had happened (B and L grids were visually similar) and LU and L
grids being visually distinct. It implies that participants were able to learn the
hidden reward structure separate from the visual context of the task.

In our particle filter model, a context θi is represented by a set of particles
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and their associated weights. Our model considered all contextual features,
implying that participants would conduct inference over the complete space of
hypotheses given those features. Our discussion regarding selective attention
suggests that a fixed model that comprises all the different contextual features of
the environment is unlikely to be an accurate model of people’s representations.
Indeed, adapting to a change of context may involve more complex mechanisms
than simply updating the parameters of an exhaustive generative model. A
more likely theory is that people create lower-dimensional representations of
their environment with features that are considered relevant for the prediction
of rewards, and only reconsider the causal structure of their environment when
judged necessary. People may then hold a bag-of-contexts with the structures
of the previously learned tasks. Naively, this could be implemented in the
particle filter template by keeping particles in store across tasks, but it would not
explain how people are able to parse experiences as novel or similar to previous
ones. Without a structuring of past experiences, an infinite amount of world
representations would need to be stored. Bayesian models have been suggested to
explain how people may decide what should be considered a new context vs one
that belongs to a known category (Niv, 2019; Qian et al., 2012; Gershman et al.,
2010b). In their accounts, experiences (or observations) are clustered according
to the causal models that generate them, and new causal models are created
following an Infinite-capacity mixture model, that infers the number of clusters
based on previous observations. By maximising both the within-cluster similarity
and the inter-context difference, the number of different contexts can be inferred
directly from the data. To control for overfitting, and limit the number of models
kept in memory, one can place a prior that favours fewer contexts. A similar
account was also discussed in the case of category learning by Sanborn et al.
(2006).

6.5 Conclusion

In this chapter, we looked at participants’ ability to learn across a sequence
of tasks in which the underlying task structures may change. We designed
an experiment to examine different aspects of learning in a changing world.
In Chapter 2, we discussed participants’ capacity to transfer knowledge across
related and adjacent tasks and improve their performance. In this chapter,
we also looked at the ability to adapt to change in the presence of an explicit
cue, and without any explicit cues. Finally, we looked at “long transfer”, or
the ability to re-use an abstract task structure in a non adjacent task. Our
experimental results showed that participants were able to do all these things.
However, we also found that participants were in one condition unable to detect
and adapt to a simple change of reward structure - and this throughout three
successive grids. To better understand the behaviour of participants, we explored
“hypothesis sampling” to explain both the successes and failures they showed
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on our tasks. Our particle filter models showed that transfer across sequential
tasks could be explained as a gradual improvement of the posterior approximation
representing the task structure, and the re-use of particles from one task to the
next. Adaptive resampling with jitter explained participants’ ability to efficiently
adapt to a change of task. Conversely, adaptive resampling without considering
new hypotheses led to strong garden path effects, as appropriate hypotheses were
filtered out early. This predicted participants’ inability to detect change and
adapt to a new reward structure. We discussed that the introduction of new
hypotheses set may be a strategic tool used by participants, triggered not only by
their environment but by their internal state. We suggested learned environment
volatility as a potential mechanism. Participants’ continued inability to consider
a fitting hypothesis could also have been caused by selective attention, or the
preference for lower dimensional representations.

Overall, this leaves us with a set of questions for future research. First,
how are processes such as selective attention implemented trial-by-trial? Future
experiments could examine how the amount of trials in L grids affect participants’
ability to adapt to the change of reward structure. Would participants have been
able to adapt had they only had one L grid instead of three?

Another question is whether simpler task structures (e.g. a location rule in
only one dimension) would facilitate considering alternative hypotheses. It could
be that the complexity of the location rule made it difficult to definitely rule out
the possibility that x and y were predictors for rewards when switching to the B
grids. Future experiments could investigate how people are able to disentangle
different types of uncertainty during self-directed learning.

Finally, we discussed that deliberative reasoning was likely not triggered only
by the environment, but also by the internal state of the learner. We suggested a
learned volatility of the environment as a potential mechanism that would induce
the consideration of alternative hypotheses. When modelling order effects in
causal learning, Abbott et al. (2011) used data from a study conducted by Collins
& Shanks (2002). In their study, they found that the responses of participants,
and hence their inferences, were influenced by the frequency at which they were
asked to give their judgements. Abbott et al. (2011) suggest that such prompts
could trigger deliberative reasoning. Designing interventions could help better
understand the deliberative process of participants and how it may be used
strategically.
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Chapter 7

Conclusions

I started this thesis by posing the general question of how people select actions
in order to jointly learn about the world and achieve goals within it when
faced with sequences of tasks. Through experimental work and the use of
computational models, I investigated how people direct their learning and select
actions across tasks that may or may not share structural similarities. While
the empirical evidence collected focused on the mechanisms underlying human
abilities – including learning from sparse data, transferring knowledge across
tasks, and the ability to detect change – still beyond those of conventional machine
learning algorithms, the behaviour of participants in our experimental tasks also
pointed at the cognitive constraints that may influence people’s active learning
strategies. Before discussing the implications of this work, the questions it raises,
and directions for future work, I will recapitulate the results and conclusions
drawn from the previous chapters.

Conclusion 1: There are meaningful differences in people’s
exploratory strategies

The experiments reported in Chapter 2 and the subsequent model-based
analyses conducted in Chapter 4 showed there were consistent patterns of
variation in people’s decision strategies. One striking example of this was the
drive to explore of some participants. In three of the four experimental conditions
presented in Chapter 2, a significant proportion of participants dismissed reward
incentives and engaged in exclusively exploratory behaviour, never re-selecting
actions known to be highly rewarding. This behaviour was also observed in
the experimental data of Wu et al. (2018) that I analysed in Chapter 5. In
Chapter 4 and 5, I used a model of individual differences to get a richer
description of the different strategies used by participants. One notable pattern
in differences amongst participants was their use of model based vs heuristics
strategies. While some were able to construct representations that helped them
progress across similar tasks, others relied on cheaper strategies largely agnostic
to the underlying structure of their environment. Chapter 6 showed that when
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participants constructed an internal representation of their environment early on,
it could predict their ability to adapt to a change of task.

Conclusion 2: People favour local search over globally
informative actions

Important research has been conducted to understand the mechanisms behind
human exploration, and studies have shown that measures of uncertainty should,
rationally, be expected to be main drivers of exploration (Cohen et al., 2007).
Recent accounts of human exploration have characterised it as a combination of
random and uncertainty directed exploration (Schulz & Gershman, 2019; Wilson
et al., 2014; Wu et al., 2018). Our empirical analyses presented in Chapter 2 and
5 suggest that rather than seeking to reduce “global uncertainty”, or maximising
information gain about the structure of the environment, participants explored
locally, selecting actions close to previous ones. This could be explained as a
heuristic strategy, akin to hill-climbing, where participants seek to learn about
the local gradient rather than constructing a complete model of their environment.
This account of human search, namely the preference for local uncertainty
over global uncertainty, is coherent with results in causal learning that showed
participants preferring actions that resolve uncertainty about few hypotheses
rather than many (Markant et al., 2016b), or seek evidence to guide local updates
of their model of the world rather than resolving overall uncertainty (Bramley
et al., 2017).

Conclusion 3: People’s exploratory strategies are adaptive
to their environment

Across four experiments in Chapter 2, I sought to understand the strong ex-
ploratory drive of a significant group of participants. I found two cooperating
factors underlying people’s epistemic drive. First, people were motivated to ex-
plore in order to reduce uncertainty: Fewer participants engaged in exclusively ex-
ploratory behaviour when they were previously trained on the task structure. Sec-
ond, and perhaps more surprisingly, people displayed novelty-seeking behaviour,
or motivation to observe new evidence regardless of its informativeness. This was
modulated by the memory demands of the tasks: When previous observations
remained visible, more participants selected exclusively novel actions throughout.
It was only when participants were both familiar with the task and previous ob-
servations did not remain available that this entirely exploratory strategy was not
observed, and all participants used strategies that traded off between exploration
and exploitation.

In Chapter 5, I looked at people’s ability to generalise to guide their search
process and exploit the hidden structure of their environment. I found that the
degree to which participants generalised was adaptive to the correlation structure
of rewards: They correctly assumed a higher degree of correlation when the
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structure of rewards was smooth, and a lower degree when the structure was
rough.

Conclusion 4: The design of cognitive models should em-
phasise posterior predictive checks

In Chapter 3, I introduced a general modelling framework to study participants’
strategies. I studied model simulations generated from the parameters fit to par-
ticipants. I compared these simulations to the actual behaviour of participants
to better understand the qualitative factors our models were able to capture, and
the ones that were missing from the model. In Chapter 5, I also contrasted the
predictions of our model against the one presented by Wu et al. (2018). In both
cases, model checking, or “posterior predictive checks” (Gelman & Shalizi, 2013),
was of considerable importance – both for the interpretation of the semantics of
a cognitive model and for informing the design of better models.

Conclusion 5: Hypothesis sampling can explain people’s
successes and failures when adapting to changing environ-
ments

In Chapter 6, I presented empirical evidence for people’s ability to learn in
environments where tasks may or may not share structural similarity, and unex-
pected change may occur. I showed that hypothesis sampling could help explain
distinct phenomena relating to the dynamics of learning across tasks. Our models
were able to explain people’s ability to progress across tasks when they shared
structural similarities, their ability to adapt to change, but also specific contexts
where participants were continuously unable to realise the world had changed.
I discussed deliberative reasoning as a strategic tool used by participants, trig-
gered not only by their environment but also by their internal state. My analysis
suggested that other mechanisms might be at play during learning in complex
and changing environments, such as learning the volatility of the environment,
selective attention, and the preference for lower dimensional representations.

7.1 Future directions

Exploration and search are essential processes that guide learning, both when
seeking information in the world or searching for hypotheses in the mind. Two
questions arise naturally, stemming from the work presented here. First, how
might one extend the models presented in Chapter 3 and Chapter 6? Second,
how does the empirical phenomena presented here connect to human behaviour
beyond grid tasks?

In Chapter 3, I discussed that while our general model had the benefit of
offering a shared parameter space to study differences amongst individuals and
offer informative descriptions of participant behaviours, it could not capture
specific strategies such as the line-search heuristic. I also showed that the general
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model was unable to deal with learning dynamics, or change of strategies between
tasks. Future models of human active learning in sequences of tasks should
consider how people adaptively select strategies, and trade off between the cost of
computation, expected rewards, and the structure of their environment (e.g. see
Lieder et al., 2014). The questions of how people learn active learning strategies
and their developmental trajectories are also of considerable interest.

In Chapter 6, I considered the problem of how participants adapt to change,
and looked at the dynamics of learning in sequences of tasks. While I found
that hypothesis sampling was a promising algorithmic theory for how people
learn and update their beliefs about the world, I also listed a number of open
questions regarding the representations people might hold as they learn. How
do people tease apart different kinds of uncertainty in their representations of
their environments? How do people learn an expectation of change trial-by-trial?
How do people learn which features to attend in new environments, and how does
this process interact with the construction of task representations? Beyond the
representations of single tasks, how do people segment previous experiences in
their memory to then be able to re-use them as building blocks when faced with
new tasks?

In this thesis, I used grid tasks as abstractions of many real world problems
with vast decision spaces. A number of recent studies have pointed that
the brain may organise spatial and non-spatial information by using similar
representations (Constantinescu et al., 2016; Garvert et al., 2017; Kaplan et al.,
2017). Similarly, there is consistent behavioural evidence for generalised cognitive
search processes (Hills et al., 2008). Future research could look into the link
between how people search in the world and how people search for hypotheses.

The theoretical advances made in active learning and exploration have led to
studies of people’s exploratory strategies in the real world. For example, Murdock
et al. (2017) used the notebooks of Charles Darwin to understand his reading
patterns and identified shifts in phases of exploration and exploration. In a more
contemporary fashion, Schulz et al. (2018a) looked at the decision strategies of
people when making food orders using a large online food delivery service and
found patterns consistent with the behaviour of participants laboratory tasks.
Exploration is an essential part of every individual’s journey of lifelong learning.
The vast amount of information available today and the often ambiguous interests
and goals of individuals make the process of searching for information increasingly
complex. With a better understanding of how people represent their environments
during exploration, and the strategies they follow, Machine Learning methods
could improve the design of interfaces to match more natural representations,
and support intuitive strategies for information gathering.
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